Integral de $$$\frac{\sin{\left(\pi x \right)}}{2}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \frac{\sin{\left(\pi x \right)}}{2}\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(x \right)} = \sin{\left(\pi x \right)}$$$:
$${\color{red}{\int{\frac{\sin{\left(\pi x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(\pi x \right)} d x}}{2}\right)}}$$
Seja $$$u=\pi x$$$.
Então $$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{\pi}$$$.
Assim,
$$\frac{{\color{red}{\int{\sin{\left(\pi x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{\pi}$$$ e $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2} = \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}}{2}$$
A integral do seno é $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2 \pi} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2 \pi}$$
Recorde que $$$u=\pi x$$$:
$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2 \pi} = - \frac{\cos{\left({\color{red}{\pi x}} \right)}}{2 \pi}$$
Portanto,
$$\int{\frac{\sin{\left(\pi x \right)}}{2} d x} = - \frac{\cos{\left(\pi x \right)}}{2 \pi}$$
Adicione a constante de integração:
$$\int{\frac{\sin{\left(\pi x \right)}}{2} d x} = - \frac{\cos{\left(\pi x \right)}}{2 \pi}+C$$
Resposta
$$$\int \frac{\sin{\left(\pi x \right)}}{2}\, dx = - \frac{\cos{\left(\pi x \right)}}{2 \pi} + C$$$A