$$$\frac{\sin{\left(\pi x \right)}}{2}$$$の積分

この計算機は、手順を示しながら$$$\frac{\sin{\left(\pi x \right)}}{2}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sin{\left(\pi x \right)}}{2}\, dx$$$ を求めよ。

解答

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(x \right)} = \sin{\left(\pi x \right)}$$$ に対して適用する:

$${\color{red}{\int{\frac{\sin{\left(\pi x \right)}}{2} d x}}} = {\color{red}{\left(\frac{\int{\sin{\left(\pi x \right)} d x}}{2}\right)}}$$

$$$u=\pi x$$$ とする。

すると $$$du=\left(\pi x\right)^{\prime }dx = \pi dx$$$(手順は»で確認できます)、$$$dx = \frac{du}{\pi}$$$ となります。

この積分は次のように書き換えられる

$$\frac{{\color{red}{\int{\sin{\left(\pi x \right)} d x}}}}{2} = \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{\pi}$$$$$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:

$$\frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{\pi} d u}}}}{2} = \frac{{\color{red}{\frac{\int{\sin{\left(u \right)} d u}}{\pi}}}}{2}$$

正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:

$$\frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2 \pi} = \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2 \pi}$$

次のことを思い出してください $$$u=\pi x$$$:

$$- \frac{\cos{\left({\color{red}{u}} \right)}}{2 \pi} = - \frac{\cos{\left({\color{red}{\pi x}} \right)}}{2 \pi}$$

したがって、

$$\int{\frac{\sin{\left(\pi x \right)}}{2} d x} = - \frac{\cos{\left(\pi x \right)}}{2 \pi}$$

積分定数を加える:

$$\int{\frac{\sin{\left(\pi x \right)}}{2} d x} = - \frac{\cos{\left(\pi x \right)}}{2 \pi}+C$$

解答

$$$\int \frac{\sin{\left(\pi x \right)}}{2}\, dx = - \frac{\cos{\left(\pi x \right)}}{2 \pi} + C$$$A


Please try a new game Rotatly