Integral de $$$- \cos{\left(2 x \right)}$$$
Calculadora relacionada: Calculadora de Integrais Definidas e Impróprias
Sua entrada
Encontre $$$\int \left(- \cos{\left(2 x \right)}\right)\, dx$$$.
Solução
Aplique a regra do múltiplo constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ usando $$$c=-1$$$ e $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$${\color{red}{\int{\left(- \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(2 x \right)} d x}\right)}}$$
Seja $$$u=2 x$$$.
Então $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (veja os passos »), e obtemos $$$dx = \frac{du}{2}$$$.
A integral pode ser reescrita como
$$- {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Aplique a regra do múltiplo constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ usando $$$c=\frac{1}{2}$$$ e $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$- {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
A integral do cosseno é $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
Recorde que $$$u=2 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{2} = - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
Portanto,
$$\int{\left(- \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}$$
Adicione a constante de integração:
$$\int{\left(- \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}+C$$
Resposta
$$$\int \left(- \cos{\left(2 x \right)}\right)\, dx = - \frac{\sin{\left(2 x \right)}}{2} + C$$$A