$$$- \cos{\left(2 x \right)}$$$ 的积分
您的输入
求$$$\int \left(- \cos{\left(2 x \right)}\right)\, dx$$$。
解答
对 $$$c=-1$$$ 和 $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\left(- \cos{\left(2 x \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(2 x \right)} d x}\right)}}$$
设$$$u=2 x$$$。
则$$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (步骤见»),并有$$$dx = \frac{du}{2}$$$。
积分变为
$$- {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = - {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
对 $$$c=\frac{1}{2}$$$ 和 $$$f{\left(u \right)} = \cos{\left(u \right)}$$$ 应用常数倍法则 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$:
$$- {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = - {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
余弦函数的积分为 $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$$- \frac{{\color{red}{\int{\cos{\left(u \right)} d u}}}}{2} = - \frac{{\color{red}{\sin{\left(u \right)}}}}{2}$$
回忆一下 $$$u=2 x$$$:
$$- \frac{\sin{\left({\color{red}{u}} \right)}}{2} = - \frac{\sin{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$
因此,
$$\int{\left(- \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}$$
加上积分常数:
$$\int{\left(- \cos{\left(2 x \right)}\right)d x} = - \frac{\sin{\left(2 x \right)}}{2}+C$$
答案
$$$\int \left(- \cos{\left(2 x \right)}\right)\, dx = - \frac{\sin{\left(2 x \right)}}{2} + C$$$A