Segunda derivada de $$$\operatorname{asec}{\left(x \right)}$$$
Calculadoras relacionadas: Calculadora de Derivativos, Calculadora de diferenciação logarítmica
Sua entrada
Encontre $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right)$$$.
Solução
Encontre a primeira derivada $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)$$$
A derivada da secante inversa é $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$Simplificar:
$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$Assim, $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.
Em seguida, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)$$$
Aplique a regra do quociente $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ com $$$f{\left(x \right)} = \left|{x}\right|$$$ e $$$g{\left(x \right)} = x^{2} \sqrt{x^{2} - 1}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\left|{x}\right|\right) x^{2} \sqrt{x^{2} - 1} - \left|{x}\right| \frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)}{\left(x^{2} \sqrt{x^{2} - 1}\right)^{2}}\right)}$$Aplique a regra do produto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ com $$$f{\left(x \right)} = x^{2}$$$ e $$$g{\left(x \right)} = \sqrt{x^{2} - 1}$$$:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) \sqrt{x^{2} - 1} + x^{2} \frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)}$$A função $$$\sqrt{x^{2} - 1}$$$ é a composição $$$f{\left(g{\left(x \right)} \right)}$$$ de duas funções $$$f{\left(u \right)} = \sqrt{u}$$$ e $$$g{\left(x \right)} = x^{2} - 1$$$.
Aplique a regra da cadeia $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(x^{2} - 1\right)\right)} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$Aplique a regra de poder $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ com $$$n = \frac{1}{2}$$$:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(x^{2} - 1\right) + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(x^{2} - 1\right) + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$Volte para a variável antiga:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(x^{2} - 1\right)}}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$A derivada de uma soma/diferença é a soma/diferença das derivadas:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2} - 1\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$A derivada de uma constante é $$$0$$$:
$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \left(- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$A derivada do valor absoluto é $$$\frac{d}{dx} \left(\left|{x}\right|\right) = \frac{x}{\left|{x}\right|}$$$:
$$\frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(\left|{x}\right|\right)\right)} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2}\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{x}{\left|{x}\right|}\right)} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2}\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$Aplique a regra de poder $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ com $$$n = 2$$$:
$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(2 x\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} {\color{red}\left(2 x\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$Simplificar:
$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{3}}{\sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$Assim, $$$\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.
Portanto, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.
Responder
$$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$A