Segunda derivada de $$$\operatorname{asec}{\left(x \right)}$$$

La calculadora encontrará la segunda derivada de $$$\operatorname{asec}{\left(x \right)}$$$, mostrando los pasos.

Calculadoras relacionadas: Calculadora de derivadas, Calculadora de diferenciación logarítmica

Deje en blanco para la detección automática.
Déjelo en blanco si no necesita la derivada en un punto específico.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right)$$$.

Solución

Calcule la primera derivada $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)$$$

La derivada de la secante inversa es $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$

Simplificar:

$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.

A continuación, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)$$$

Aplica la regla del cociente $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ con $$$f{\left(x \right)} = \left|{x}\right|$$$ y $$$g{\left(x \right)} = x^{2} \sqrt{x^{2} - 1}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\left|{x}\right|\right) x^{2} \sqrt{x^{2} - 1} - \left|{x}\right| \frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)}{\left(x^{2} \sqrt{x^{2} - 1}\right)^{2}}\right)}$$

Aplica la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = x^{2}$$$ y $$$g{\left(x \right)} = \sqrt{x^{2} - 1}$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) \sqrt{x^{2} - 1} + x^{2} \frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} \frac{d}{dx} \left(\sqrt{x^{2} - 1}\right) + \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} \frac{d}{dx} \left(\sqrt{x^{2} - 1}\right) + \sqrt{x^{2} - 1} {\color{red}\left(2 x\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La función $$$\sqrt{x^{2} - 1}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \sqrt{u}$$$ y $$$g{\left(x \right)} = x^{2} - 1$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(x^{2} - 1\right)\right)} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Aplica la regla de la potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = \frac{1}{2}$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(x^{2} - 1\right) + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(x^{2} {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(x^{2} - 1\right) + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Volver a la variable original:

$$\frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} \frac{d}{dx} \left(\left|{x}\right|\right) - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(x^{2} - 1\right)}}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La derivada del valor absoluto es $$$\frac{d}{dx} \left(\left|{x}\right|\right) = \frac{x}{\left|{x}\right|}$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(\left|{x}\right|\right)\right)} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{x}{\left|{x}\right|}\right)} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La derivada de una suma/diferencia es la suma/diferencia de las derivadas:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2} - 1\right)\right)}}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left({\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} - \frac{d}{dx} \left(1\right)\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left({\color{red}\left(2 x\right)} - \frac{d}{dx} \left(1\right)\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La derivada de una constante es $$$0$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left(2 x - {\color{red}\left(\frac{d}{dx} \left(1\right)\right)}\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left(2 x - {\color{red}\left(0\right)}\right)}{2 \sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Simplificar:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{3}}{\sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$

Por lo tanto, $$$\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.

Por lo tanto, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.

Respuesta

$$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$A


Please try a new game Rotatly