Segunda derivada de $$$\operatorname{asec}{\left(x \right)}$$$

La calculadora encontrará la segunda derivada de $$$\operatorname{asec}{\left(x \right)}$$$, con los pasos que se muestran.

Calculadoras relacionadas: Calculadora de derivados, Calculadora de diferenciación logarítmica

Deje vacío para la detección automática.
Deje en blanco, si no necesita la derivada en un punto específico.

Si la calculadora no calculó algo o ha identificado un error, o tiene una sugerencia/comentario, escríbalo en los comentarios a continuación.

Tu aportación

Encuentra $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right)$$$.

Solución

Encuentra la primera derivada $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)$$$

La derivada de la secante inversa es $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$

Simplificar:

$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.

A continuación, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)$$$

Aplicar la regla del cociente $$$\frac{d}{dx} \left(\frac{f{\left(x \right)}}{g{\left(x \right)}}\right) = \frac{\frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} - f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)}{g^{2}{\left(x \right)}}$$$ con $$$f{\left(x \right)} = \left|{x}\right|$$$ y $$$g{\left(x \right)} = x^{2} \sqrt{x^{2} - 1}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\left|{x}\right|\right) x^{2} \sqrt{x^{2} - 1} - \left|{x}\right| \frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)}{\left(x^{2} \sqrt{x^{2} - 1}\right)^{2}}\right)}$$

La derivada del valor absoluto es $$$\frac{d}{dx} \left(\left|{x}\right|\right) = \frac{x}{\left|{x}\right|}$$$:

$$\frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(\left|{x}\right|\right)\right)} - \left|{x}\right| \frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)}{x^{4} \left(x^{2} - 1\right)} = \frac{x^{2} \sqrt{x^{2} - 1} {\color{red}\left(\frac{x}{\left|{x}\right|}\right)} - \left|{x}\right| \frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)}{x^{4} \left(x^{2} - 1\right)}$$

Aplique la regla del producto $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ con $$$f{\left(x \right)} = x^{2}$$$ y $$$g{\left(x \right)} = \sqrt{x^{2} - 1}$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2} \sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left|{x}\right| {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) \sqrt{x^{2} - 1} + x^{2} \frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)}}{x^{4} \left(x^{2} - 1\right)}$$

La función $$$\sqrt{x^{2} - 1}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \sqrt{u}$$$ y $$$g{\left(x \right)} = x^{2} - 1$$$.

Aplicar la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(x^{2} {\color{red}\left(\frac{d}{dx} \left(\sqrt{x^{2} - 1}\right)\right)} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right) \frac{d}{dx} \left(x^{2} - 1\right)\right)} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Aplique la regla de potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = \frac{1}{2}$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(x^{2} {\color{red}\left(\frac{d}{du} \left(\sqrt{u}\right)\right)} \frac{d}{dx} \left(x^{2} - 1\right) + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(x^{2} {\color{red}\left(\frac{1}{2 \sqrt{u}}\right)} \frac{d}{dx} \left(x^{2} - 1\right) + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Vuelva a la variable anterior:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(u\right)}}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \frac{d}{dx} \left(x^{2} - 1\right)}{2 \sqrt{{\color{red}\left(x^{2} - 1\right)}}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La derivada de una suma/diferencia es la suma/diferencia de derivadas:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2} - 1\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right) - \frac{d}{dx} \left(1\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

La derivada de una constante es $$$0$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left(- {\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} \left(- {\color{red}\left(0\right)} + \frac{d}{dx} \left(x^{2}\right)\right)}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} \frac{d}{dx} \left(x^{2}\right)\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Aplique la regla de potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 2$$$:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{2} {\color{red}\left(2 x\right)}}{2 \sqrt{x^{2} - 1}} + \sqrt{x^{2} - 1} {\color{red}\left(2 x\right)}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)}$$

Simplificar:

$$\frac{\frac{x^{3} \sqrt{x^{2} - 1}}{\left|{x}\right|} - \left(\frac{x^{3}}{\sqrt{x^{2} - 1}} + 2 x \sqrt{x^{2} - 1}\right) \left|{x}\right|}{x^{4} \left(x^{2} - 1\right)} = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$

Por lo tanto, $$$\frac{d}{dx} \left(\frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.

Por lo tanto, $$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$.

Respuesta

$$$\frac{d^{2}}{dx^{2}} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1 - 2 x^{2}}{x \left(x^{2} - 1\right)^{\frac{3}{2}} \left|{x}\right|}$$$A