Integraal van $$$\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx$$$.

Oplossing

Haal één cosinus eruit en druk de rest uit in termen van de sinus, met behulp van de formule $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ met $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}}$$

Zij $$$u=\sin{\left(x \right)}$$$.

Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.

Dus,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} \left(1 - u^{2}\right)^{2} d u}}}$$

Expand the expression:

$${\color{red}{\int{u^{2} \left(1 - u^{2}\right)^{2} d u}}} = {\color{red}{\int{\left(u^{6} - 2 u^{4} + u^{2}\right)d u}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(u^{6} - 2 u^{4} + u^{2}\right)d u}}} = {\color{red}{\left(\int{u^{2} d u} - \int{2 u^{4} d u} + \int{u^{6} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\int{u^{2} d u}}}=- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=6$$$:

$$\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\int{u^{6} d u}}}=\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = u^{4}$$$:

$$\frac{u^{7}}{7} + \frac{u^{3}}{3} - {\color{red}{\int{2 u^{4} d u}}} = \frac{u^{7}}{7} + \frac{u^{3}}{3} - {\color{red}{\left(2 \int{u^{4} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=4$$$:

$$\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\int{u^{4} d u}}}=\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{3}}{3} - \frac{2 {\color{red}{u}}^{5}}{5} + \frac{{\color{red}{u}}^{7}}{7} = \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{5}}{5} + \frac{{\color{red}{\sin{\left(x \right)}}}^{7}}{7}$$

Dus,

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\sin^{7}{\left(x \right)}}{7} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}$$

Vereenvoudig:

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105}$$

Voeg de integratieconstante toe:

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105}+C$$

Antwoord

$$$\int \sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105} + C$$$A


Please try a new game Rotatly