$$$\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}$$$의 적분

이 계산기는 단계별 풀이와 함께 $$$\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}$$$의 적분/원시함수를 구합니다.

관련 계산기: 정적분 및 가적분 계산기

$$$dx$$$, $$$dy$$$ 등과 같은 미분요소 없이 작성해 주세요.
자동 감지를 위해 비워 두세요.

계산기가 무언가를 계산하지 못했거나 오류를 발견하셨거나, 제안이나 피드백이 있으시다면 문의해 주세요.

사용자 입력

$$$\int \sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx$$$을(를) 구하시오.

풀이

코사인 하나를 분리하고, $$$\alpha=x$$$에 대한 공식 $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$을 사용하여 나머지는 모두 사인으로 표현하세요.:

$${\color{red}{\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}}$$

$$$u=\sin{\left(x \right)}$$$라 하자.

그러면 $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (단계는 »에서 볼 수 있습니다), 그리고 $$$\cos{\left(x \right)} dx = du$$$임을 얻습니다.

따라서,

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right)^{2} \sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} \left(1 - u^{2}\right)^{2} d u}}}$$

Expand the expression:

$${\color{red}{\int{u^{2} \left(1 - u^{2}\right)^{2} d u}}} = {\color{red}{\int{\left(u^{6} - 2 u^{4} + u^{2}\right)d u}}}$$

각 항별로 적분하십시오:

$${\color{red}{\int{\left(u^{6} - 2 u^{4} + u^{2}\right)d u}}} = {\color{red}{\left(\int{u^{2} d u} - \int{2 u^{4} d u} + \int{u^{6} d u}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=2$$$에 적용합니다:

$$- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\int{u^{2} d u}}}=- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\frac{u^{1 + 2}}{1 + 2}}}=- \int{2 u^{4} d u} + \int{u^{6} d u} + {\color{red}{\left(\frac{u^{3}}{3}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=6$$$에 적용합니다:

$$\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\int{u^{6} d u}}}=\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\frac{u^{1 + 6}}{1 + 6}}}=\frac{u^{3}}{3} - \int{2 u^{4} d u} + {\color{red}{\left(\frac{u^{7}}{7}\right)}}$$

상수배 법칙 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$$$$c=2$$$$$$f{\left(u \right)} = u^{4}$$$에 적용하세요:

$$\frac{u^{7}}{7} + \frac{u^{3}}{3} - {\color{red}{\int{2 u^{4} d u}}} = \frac{u^{7}}{7} + \frac{u^{3}}{3} - {\color{red}{\left(2 \int{u^{4} d u}\right)}}$$

멱법칙($$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$)을 $$$n=4$$$에 적용합니다:

$$\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\int{u^{4} d u}}}=\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\frac{u^{1 + 4}}{1 + 4}}}=\frac{u^{7}}{7} + \frac{u^{3}}{3} - 2 {\color{red}{\left(\frac{u^{5}}{5}\right)}}$$

다음 $$$u=\sin{\left(x \right)}$$$을 기억하라:

$$\frac{{\color{red}{u}}^{3}}{3} - \frac{2 {\color{red}{u}}^{5}}{5} + \frac{{\color{red}{u}}^{7}}{7} = \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3} - \frac{2 {\color{red}{\sin{\left(x \right)}}}^{5}}{5} + \frac{{\color{red}{\sin{\left(x \right)}}}^{7}}{7}$$

따라서,

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\sin^{7}{\left(x \right)}}{7} - \frac{2 \sin^{5}{\left(x \right)}}{5} + \frac{\sin^{3}{\left(x \right)}}{3}$$

간단히 하시오:

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105}$$

적분 상수를 추가하세요:

$$\int{\sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)} d x} = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105}+C$$

정답

$$$\int \sin^{2}{\left(x \right)} \cos^{5}{\left(x \right)}\, dx = \frac{\left(15 \sin^{4}{\left(x \right)} - 42 \sin^{2}{\left(x \right)} + 35\right) \sin^{3}{\left(x \right)}}{105} + C$$$A


Please try a new game Rotatly