Integraal van $$$- x e^{2} + e^{x}$$$

De calculator zal de integraal/primitieve functie van $$$- x e^{2} + e^{x}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- x e^{2} + e^{x}\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(- x e^{2} + e^{x}\right)d x}}} = {\color{red}{\left(- \int{x e^{2} d x} + \int{e^{x} d x}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=e^{2}$$$ en $$$f{\left(x \right)} = x$$$:

$$\int{e^{x} d x} - {\color{red}{\int{x e^{2} d x}}} = \int{e^{x} d x} - {\color{red}{e^{2} \int{x d x}}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$\int{e^{x} d x} - e^{2} {\color{red}{\int{x d x}}}=\int{e^{x} d x} - e^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{e^{x} d x} - e^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

De integraal van de exponentiële functie is $$$\int{e^{x} d x} = e^{x}$$$:

$$- \frac{x^{2} e^{2}}{2} + {\color{red}{\int{e^{x} d x}}} = - \frac{x^{2} e^{2}}{2} + {\color{red}{e^{x}}}$$

Dus,

$$\int{\left(- x e^{2} + e^{x}\right)d x} = - \frac{x^{2} e^{2}}{2} + e^{x}$$

Voeg de integratieconstante toe:

$$\int{\left(- x e^{2} + e^{x}\right)d x} = - \frac{x^{2} e^{2}}{2} + e^{x}+C$$

Antwoord

$$$\int \left(- x e^{2} + e^{x}\right)\, dx = \left(- \frac{x^{2} e^{2}}{2} + e^{x}\right) + C$$$A


Please try a new game Rotatly