Integralen av $$$- x e^{2} + e^{x}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$- x e^{2} + e^{x}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \left(- x e^{2} + e^{x}\right)\, dx$$$.

Lösning

Integrera termvis:

$${\color{red}{\int{\left(- x e^{2} + e^{x}\right)d x}}} = {\color{red}{\left(- \int{x e^{2} d x} + \int{e^{x} d x}\right)}}$$

Tillämpa konstantfaktorregeln $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ med $$$c=e^{2}$$$ och $$$f{\left(x \right)} = x$$$:

$$\int{e^{x} d x} - {\color{red}{\int{x e^{2} d x}}} = \int{e^{x} d x} - {\color{red}{e^{2} \int{x d x}}}$$

Tillämpa potensregeln $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ med $$$n=1$$$:

$$\int{e^{x} d x} - e^{2} {\color{red}{\int{x d x}}}=\int{e^{x} d x} - e^{2} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\int{e^{x} d x} - e^{2} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$

Integralen av den exponentiella funktionen är $$$\int{e^{x} d x} = e^{x}$$$:

$$- \frac{x^{2} e^{2}}{2} + {\color{red}{\int{e^{x} d x}}} = - \frac{x^{2} e^{2}}{2} + {\color{red}{e^{x}}}$$

Alltså,

$$\int{\left(- x e^{2} + e^{x}\right)d x} = - \frac{x^{2} e^{2}}{2} + e^{x}$$

Lägg till integrationskonstanten:

$$\int{\left(- x e^{2} + e^{x}\right)d x} = - \frac{x^{2} e^{2}}{2} + e^{x}+C$$

Svar

$$$\int \left(- x e^{2} + e^{x}\right)\, dx = \left(- \frac{x^{2} e^{2}}{2} + e^{x}\right) + C$$$A


Please try a new game Rotatly