Integraal van $$$7 i^{4} - 12 i^{2}$$$

De calculator zal de integraal/primitieve functie van $$$7 i^{4} - 12 i^{2}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(7 i^{4} - 12 i^{2}\right)\, di$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(7 i^{4} - 12 i^{2}\right)d i}}} = {\color{red}{\left(- \int{12 i^{2} d i} + \int{7 i^{4} d i}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(i \right)}\, di = c \int f{\left(i \right)}\, di$$$ toe met $$$c=12$$$ en $$$f{\left(i \right)} = i^{2}$$$:

$$\int{7 i^{4} d i} - {\color{red}{\int{12 i^{2} d i}}} = \int{7 i^{4} d i} - {\color{red}{\left(12 \int{i^{2} d i}\right)}}$$

Pas de machtsregel $$$\int i^{n}\, di = \frac{i^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$\int{7 i^{4} d i} - 12 {\color{red}{\int{i^{2} d i}}}=\int{7 i^{4} d i} - 12 {\color{red}{\frac{i^{1 + 2}}{1 + 2}}}=\int{7 i^{4} d i} - 12 {\color{red}{\left(\frac{i^{3}}{3}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(i \right)}\, di = c \int f{\left(i \right)}\, di$$$ toe met $$$c=7$$$ en $$$f{\left(i \right)} = i^{4}$$$:

$$- 4 i^{3} + {\color{red}{\int{7 i^{4} d i}}} = - 4 i^{3} + {\color{red}{\left(7 \int{i^{4} d i}\right)}}$$

Pas de machtsregel $$$\int i^{n}\, di = \frac{i^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=4$$$:

$$- 4 i^{3} + 7 {\color{red}{\int{i^{4} d i}}}=- 4 i^{3} + 7 {\color{red}{\frac{i^{1 + 4}}{1 + 4}}}=- 4 i^{3} + 7 {\color{red}{\left(\frac{i^{5}}{5}\right)}}$$

Dus,

$$\int{\left(7 i^{4} - 12 i^{2}\right)d i} = \frac{7 i^{5}}{5} - 4 i^{3}$$

Vereenvoudig:

$$\int{\left(7 i^{4} - 12 i^{2}\right)d i} = \frac{i^{3} \left(7 i^{2} - 20\right)}{5}$$

Voeg de integratieconstante toe:

$$\int{\left(7 i^{4} - 12 i^{2}\right)d i} = \frac{i^{3} \left(7 i^{2} - 20\right)}{5}+C$$

Antwoord

$$$\int \left(7 i^{4} - 12 i^{2}\right)\, di = \frac{i^{3} \left(7 i^{2} - 20\right)}{5} + C$$$A


Please try a new game Rotatly