Integraal van $$$\sqrt{x^{2} - 2 x + 5}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sqrt{x^{2} - 2 x + 5}\, dx$$$.
Oplossing
Voltooi het kwadraat (stappen zijn te zien »): $$$x^{2} - 2 x + 5 = \left(x - 1\right)^{2} + 4$$$:
$${\color{red}{\int{\sqrt{x^{2} - 2 x + 5} d x}}} = {\color{red}{\int{\sqrt{\left(x - 1\right)^{2} + 4} d x}}}$$
Zij $$$u=x - 1$$$.
Dan $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = du$$$.
Dus,
$${\color{red}{\int{\sqrt{\left(x - 1\right)^{2} + 4} d x}}} = {\color{red}{\int{\sqrt{u^{2} + 4} d u}}}$$
Zij $$$u=2 \sinh{\left(v \right)}$$$.
Dan $$$du=\left(2 \sinh{\left(v \right)}\right)^{\prime }dv = 2 \cosh{\left(v \right)} dv$$$ (zie » voor de stappen).
Bovendien volgt dat $$$v=\operatorname{asinh}{\left(\frac{u}{2} \right)}$$$.
Dus,
$$$\sqrt{ u ^{2} + 4} = \sqrt{4 \sinh^{2}{\left( v \right)} + 4}$$$
Gebruik de identiteit $$$\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}$$$:
$$$\sqrt{4 \sinh^{2}{\left( v \right)} + 4}=2 \sqrt{\sinh^{2}{\left( v \right)} + 1}=2 \sqrt{\cosh^{2}{\left( v \right)}}$$$
$$$2 \sqrt{\cosh^{2}{\left( v \right)}} = 2 \cosh{\left( v \right)}$$$
Dus,
$${\color{red}{\int{\sqrt{u^{2} + 4} d u}}} = {\color{red}{\int{4 \cosh^{2}{\left(v \right)} d v}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=4$$$ en $$$f{\left(v \right)} = \cosh^{2}{\left(v \right)}$$$:
$${\color{red}{\int{4 \cosh^{2}{\left(v \right)} d v}}} = {\color{red}{\left(4 \int{\cosh^{2}{\left(v \right)} d v}\right)}}$$
Pas de machtsreductieformule $$$\cosh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ toe met $$$\alpha= v $$$:
$$4 {\color{red}{\int{\cosh^{2}{\left(v \right)} d v}}} = 4 {\color{red}{\int{\left(\frac{\cosh{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(v \right)} = \cosh{\left(2 v \right)} + 1$$$:
$$4 {\color{red}{\int{\left(\frac{\cosh{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 4 {\color{red}{\left(\frac{\int{\left(\cosh{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$
Integreer termgewijs:
$$2 {\color{red}{\int{\left(\cosh{\left(2 v \right)} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{\cosh{\left(2 v \right)} d v}\right)}}$$
Pas de constantenregel $$$\int c\, dv = c v$$$ toe met $$$c=1$$$:
$$2 \int{\cosh{\left(2 v \right)} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{\cosh{\left(2 v \right)} d v} + 2 {\color{red}{v}}$$
Zij $$$w=2 v$$$.
Dan $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$ (de stappen zijn te zien »), en dan geldt dat $$$dv = \frac{dw}{2}$$$.
Dus,
$$2 v + 2 {\color{red}{\int{\cosh{\left(2 v \right)} d v}}} = 2 v + 2 {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(w \right)} = \cosh{\left(w \right)}$$$:
$$2 v + 2 {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}} = 2 v + 2 {\color{red}{\left(\frac{\int{\cosh{\left(w \right)} d w}}{2}\right)}}$$
De integraal van de cosinus hyperbolicus is $$$\int{\cosh{\left(w \right)} d w} = \sinh{\left(w \right)}$$$:
$$2 v + {\color{red}{\int{\cosh{\left(w \right)} d w}}} = 2 v + {\color{red}{\sinh{\left(w \right)}}}$$
We herinneren eraan dat $$$w=2 v$$$:
$$2 v + \sinh{\left({\color{red}{w}} \right)} = 2 v + \sinh{\left({\color{red}{\left(2 v\right)}} \right)}$$
We herinneren eraan dat $$$v=\operatorname{asinh}{\left(\frac{u}{2} \right)}$$$:
$$\sinh{\left(2 {\color{red}{v}} \right)} + 2 {\color{red}{v}} = \sinh{\left(2 {\color{red}{\operatorname{asinh}{\left(\frac{u}{2} \right)}}} \right)} + 2 {\color{red}{\operatorname{asinh}{\left(\frac{u}{2} \right)}}}$$
We herinneren eraan dat $$$u=x - 1$$$:
$$\sinh{\left(2 \operatorname{asinh}{\left(\frac{{\color{red}{u}}}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{{\color{red}{u}}}{2} \right)} = \sinh{\left(2 \operatorname{asinh}{\left(\frac{{\color{red}{\left(x - 1\right)}}}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{{\color{red}{\left(x - 1\right)}}}{2} \right)}$$
Dus,
$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \sinh{\left(2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$
Gebruik de formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ om de uitdrukking te vereenvoudigen:
$$\int{\sqrt{x^{2} - 2 x + 5} d x} = 2 \left(\frac{x}{2} - \frac{1}{2}\right) \sqrt{\left(\frac{x}{2} - \frac{1}{2}\right)^{2} + 1} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$
Vereenvoudig verder:
$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$
Voeg de integratieconstante toe:
$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}+C$$
Antwoord
$$$\int \sqrt{x^{2} - 2 x + 5}\, dx = \left(\frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}\right) + C$$$A