$$$\sqrt{x^{2} - 2 x + 5}$$$の積分

この計算機は、手順を示しながら$$$\sqrt{x^{2} - 2 x + 5}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \sqrt{x^{2} - 2 x + 5}\, dx$$$ を求めよ。

解答

平方完成を行ってください(手順は»で確認できます): $$$x^{2} - 2 x + 5 = \left(x - 1\right)^{2} + 4$$$:

$${\color{red}{\int{\sqrt{x^{2} - 2 x + 5} d x}}} = {\color{red}{\int{\sqrt{\left(x - 1\right)^{2} + 4} d x}}}$$

$$$u=x - 1$$$ とする。

すると $$$du=\left(x - 1\right)^{\prime }dx = 1 dx$$$(手順は»で確認できます)、$$$dx = du$$$ となります。

したがって、

$${\color{red}{\int{\sqrt{\left(x - 1\right)^{2} + 4} d x}}} = {\color{red}{\int{\sqrt{u^{2} + 4} d u}}}$$

$$$u=2 \sinh{\left(v \right)}$$$ とする。

すると $$$du=\left(2 \sinh{\left(v \right)}\right)^{\prime }dv = 2 \cosh{\left(v \right)} dv$$$ (手順は»で確認できます)。

また、$$$v=\operatorname{asinh}{\left(\frac{u}{2} \right)}$$$が成り立つ。

したがって、

$$$\sqrt{ u ^{2} + 4} = \sqrt{4 \sinh^{2}{\left( v \right)} + 4}$$$

恒等式 $$$\sinh^{2}{\left( v \right)} + 1 = \cosh^{2}{\left( v \right)}$$$ を用いよ:

$$$\sqrt{4 \sinh^{2}{\left( v \right)} + 4}=2 \sqrt{\sinh^{2}{\left( v \right)} + 1}=2 \sqrt{\cosh^{2}{\left( v \right)}}$$$

$$$2 \sqrt{\cosh^{2}{\left( v \right)}} = 2 \cosh{\left( v \right)}$$$

したがって、

$${\color{red}{\int{\sqrt{u^{2} + 4} d u}}} = {\color{red}{\int{4 \cosh^{2}{\left(v \right)} d v}}}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=4$$$$$$f{\left(v \right)} = \cosh^{2}{\left(v \right)}$$$ に対して適用する:

$${\color{red}{\int{4 \cosh^{2}{\left(v \right)} d v}}} = {\color{red}{\left(4 \int{\cosh^{2}{\left(v \right)} d v}\right)}}$$

冪低減公式 $$$\cosh^{2}{\left(\alpha \right)} = \frac{\cosh{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$$$$\alpha= v $$$ に適用する:

$$4 {\color{red}{\int{\cosh^{2}{\left(v \right)} d v}}} = 4 {\color{red}{\int{\left(\frac{\cosh{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}}$$

定数倍の法則 $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(v \right)} = \cosh{\left(2 v \right)} + 1$$$ に対して適用する:

$$4 {\color{red}{\int{\left(\frac{\cosh{\left(2 v \right)}}{2} + \frac{1}{2}\right)d v}}} = 4 {\color{red}{\left(\frac{\int{\left(\cosh{\left(2 v \right)} + 1\right)d v}}{2}\right)}}$$

項別に積分せよ:

$$2 {\color{red}{\int{\left(\cosh{\left(2 v \right)} + 1\right)d v}}} = 2 {\color{red}{\left(\int{1 d v} + \int{\cosh{\left(2 v \right)} d v}\right)}}$$

$$$c=1$$$ に対して定数則 $$$\int c\, dv = c v$$$ を適用する:

$$2 \int{\cosh{\left(2 v \right)} d v} + 2 {\color{red}{\int{1 d v}}} = 2 \int{\cosh{\left(2 v \right)} d v} + 2 {\color{red}{v}}$$

$$$w=2 v$$$ とする。

すると $$$dw=\left(2 v\right)^{\prime }dv = 2 dv$$$(手順は»で確認できます)、$$$dv = \frac{dw}{2}$$$ となります。

この積分は次のように書き換えられる

$$2 v + 2 {\color{red}{\int{\cosh{\left(2 v \right)} d v}}} = 2 v + 2 {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}}$$

定数倍の法則 $$$\int c f{\left(w \right)}\, dw = c \int f{\left(w \right)}\, dw$$$ を、$$$c=\frac{1}{2}$$$$$$f{\left(w \right)} = \cosh{\left(w \right)}$$$ に対して適用する:

$$2 v + 2 {\color{red}{\int{\frac{\cosh{\left(w \right)}}{2} d w}}} = 2 v + 2 {\color{red}{\left(\frac{\int{\cosh{\left(w \right)} d w}}{2}\right)}}$$

双曲線余弦関数の積分は $$$\int{\cosh{\left(w \right)} d w} = \sinh{\left(w \right)}$$$ です:

$$2 v + {\color{red}{\int{\cosh{\left(w \right)} d w}}} = 2 v + {\color{red}{\sinh{\left(w \right)}}}$$

次のことを思い出してください $$$w=2 v$$$:

$$2 v + \sinh{\left({\color{red}{w}} \right)} = 2 v + \sinh{\left({\color{red}{\left(2 v\right)}} \right)}$$

次のことを思い出してください $$$v=\operatorname{asinh}{\left(\frac{u}{2} \right)}$$$:

$$\sinh{\left(2 {\color{red}{v}} \right)} + 2 {\color{red}{v}} = \sinh{\left(2 {\color{red}{\operatorname{asinh}{\left(\frac{u}{2} \right)}}} \right)} + 2 {\color{red}{\operatorname{asinh}{\left(\frac{u}{2} \right)}}}$$

次のことを思い出してください $$$u=x - 1$$$:

$$\sinh{\left(2 \operatorname{asinh}{\left(\frac{{\color{red}{u}}}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{{\color{red}{u}}}{2} \right)} = \sinh{\left(2 \operatorname{asinh}{\left(\frac{{\color{red}{\left(x - 1\right)}}}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{{\color{red}{\left(x - 1\right)}}}{2} \right)}$$

したがって、

$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \sinh{\left(2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)} \right)} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$

公式 $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$ を用いて、式を簡単化しなさい:

$$\int{\sqrt{x^{2} - 2 x + 5} d x} = 2 \left(\frac{x}{2} - \frac{1}{2}\right) \sqrt{\left(\frac{x}{2} - \frac{1}{2}\right)^{2} + 1} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$

さらに簡単化:

$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}$$

積分定数を加える:

$$\int{\sqrt{x^{2} - 2 x + 5} d x} = \frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}+C$$

解答

$$$\int \sqrt{x^{2} - 2 x + 5}\, dx = \left(\frac{\left(x - 1\right) \sqrt{\left(x - 1\right)^{2} + 4}}{2} + 2 \operatorname{asinh}{\left(\frac{x}{2} - \frac{1}{2} \right)}\right) + C$$$A


Please try a new game Rotatly