Integraal van $$$\sin^{2}{\left(x \right)} \cos{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx$$$.
Oplossing
Zij $$$u=\sin{\left(x \right)}$$$.
Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.
Dus,
$${\color{red}{\int{\sin^{2}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{2} d u}}}$$
Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:
$${\color{red}{\int{u^{2} d u}}}={\color{red}{\frac{u^{1 + 2}}{1 + 2}}}={\color{red}{\left(\frac{u^{3}}{3}\right)}}$$
We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:
$$\frac{{\color{red}{u}}^{3}}{3} = \frac{{\color{red}{\sin{\left(x \right)}}}^{3}}{3}$$
Dus,
$$\int{\sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} = \frac{\sin^{3}{\left(x \right)}}{3}$$
Voeg de integratieconstante toe:
$$\int{\sin^{2}{\left(x \right)} \cos{\left(x \right)} d x} = \frac{\sin^{3}{\left(x \right)}}{3}+C$$
Antwoord
$$$\int \sin^{2}{\left(x \right)} \cos{\left(x \right)}\, dx = \frac{\sin^{3}{\left(x \right)}}{3} + C$$$A