Integraal van $$$\sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx$$$.

Oplossing

Haal één cosinus eruit en druk de rest uit in termen van de sinus, met behulp van de formule $$$\cos^2\left(\alpha \right)=-\sin^2\left(\alpha \right)+1$$$ met $$$\alpha=x$$$:

$${\color{red}{\int{\sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)} d x}}} = {\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{5}{\left(x \right)} \cos{\left(x \right)} d x}}}$$

Zij $$$u=\sin{\left(x \right)}$$$.

Dan $$$du=\left(\sin{\left(x \right)}\right)^{\prime }dx = \cos{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(x \right)} dx = du$$$.

De integraal kan worden herschreven als

$${\color{red}{\int{\left(1 - \sin^{2}{\left(x \right)}\right) \sin^{5}{\left(x \right)} \cos{\left(x \right)} d x}}} = {\color{red}{\int{u^{5} \left(1 - u^{2}\right) d u}}}$$

Expand the expression:

$${\color{red}{\int{u^{5} \left(1 - u^{2}\right) d u}}} = {\color{red}{\int{\left(- u^{7} + u^{5}\right)d u}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(- u^{7} + u^{5}\right)d u}}} = {\color{red}{\left(\int{u^{5} d u} - \int{u^{7} d u}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=5$$$:

$$- \int{u^{7} d u} + {\color{red}{\int{u^{5} d u}}}=- \int{u^{7} d u} + {\color{red}{\frac{u^{1 + 5}}{1 + 5}}}=- \int{u^{7} d u} + {\color{red}{\left(\frac{u^{6}}{6}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=7$$$:

$$\frac{u^{6}}{6} - {\color{red}{\int{u^{7} d u}}}=\frac{u^{6}}{6} - {\color{red}{\frac{u^{1 + 7}}{1 + 7}}}=\frac{u^{6}}{6} - {\color{red}{\left(\frac{u^{8}}{8}\right)}}$$

We herinneren eraan dat $$$u=\sin{\left(x \right)}$$$:

$$\frac{{\color{red}{u}}^{6}}{6} - \frac{{\color{red}{u}}^{8}}{8} = \frac{{\color{red}{\sin{\left(x \right)}}}^{6}}{6} - \frac{{\color{red}{\sin{\left(x \right)}}}^{8}}{8}$$

Dus,

$$\int{\sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{8}{\left(x \right)}}{8} + \frac{\sin^{6}{\left(x \right)}}{6}$$

Voeg de integratieconstante toe:

$$\int{\sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)} d x} = - \frac{\sin^{8}{\left(x \right)}}{8} + \frac{\sin^{6}{\left(x \right)}}{6}+C$$

Antwoord

$$$\int \sin^{5}{\left(x \right)} \cos^{3}{\left(x \right)}\, dx = \left(- \frac{\sin^{8}{\left(x \right)}}{8} + \frac{\sin^{6}{\left(x \right)}}{6}\right) + C$$$A


Please try a new game Rotatly