Integraal van $$$\frac{t}{e^{3}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{t}{e^{3}}\, dt$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=e^{-3}$$$ en $$$f{\left(t \right)} = t$$$:
$${\color{red}{\int{\frac{t}{e^{3}} d t}}} = {\color{red}{\frac{\int{t d t}}{e^{3}}}}$$
Pas de machtsregel $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:
$$\frac{{\color{red}{\int{t d t}}}}{e^{3}}=\frac{{\color{red}{\frac{t^{1 + 1}}{1 + 1}}}}{e^{3}}=\frac{{\color{red}{\left(\frac{t^{2}}{2}\right)}}}{e^{3}}$$
Dus,
$$\int{\frac{t}{e^{3}} d t} = \frac{t^{2}}{2 e^{3}}$$
Voeg de integratieconstante toe:
$$\int{\frac{t}{e^{3}} d t} = \frac{t^{2}}{2 e^{3}}+C$$
Antwoord
$$$\int \frac{t}{e^{3}}\, dt = \frac{t^{2}}{2 e^{3}} + C$$$A