Integraal van $$$e^{- 2 x}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int e^{- 2 x}\, dx$$$.
Oplossing
Zij $$$u=- 2 x$$$.
Dan $$$du=\left(- 2 x\right)^{\prime }dx = - 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = - \frac{du}{2}$$$.
De integraal wordt
$${\color{red}{\int{e^{- 2 x} d x}}} = {\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=- \frac{1}{2}$$$ en $$$f{\left(u \right)} = e^{u}$$$:
$${\color{red}{\int{\left(- \frac{e^{u}}{2}\right)d u}}} = {\color{red}{\left(- \frac{\int{e^{u} d u}}{2}\right)}}$$
De integraal van de exponentiële functie is $$$\int{e^{u} d u} = e^{u}$$$:
$$- \frac{{\color{red}{\int{e^{u} d u}}}}{2} = - \frac{{\color{red}{e^{u}}}}{2}$$
We herinneren eraan dat $$$u=- 2 x$$$:
$$- \frac{e^{{\color{red}{u}}}}{2} = - \frac{e^{{\color{red}{\left(- 2 x\right)}}}}{2}$$
Dus,
$$\int{e^{- 2 x} d x} = - \frac{e^{- 2 x}}{2}$$
Voeg de integratieconstante toe:
$$\int{e^{- 2 x} d x} = - \frac{e^{- 2 x}}{2}+C$$
Antwoord
$$$\int e^{- 2 x}\, dx = - \frac{e^{- 2 x}}{2} + C$$$A