Integraal van $$$\cot^{2}{\left(x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \cot^{2}{\left(x \right)}\, dx$$$.
Oplossing
Zij $$$u=\cot{\left(x \right)}$$$.
Dan $$$du=\left(\cot{\left(x \right)}\right)^{\prime }dx = - \csc^{2}{\left(x \right)} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\csc^{2}{\left(x \right)} dx = - du$$$.
Dus,
$${\color{red}{\int{\cot^{2}{\left(x \right)} d x}}} = {\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=-1$$$ en $$$f{\left(u \right)} = \frac{u^{2}}{u^{2} + 1}$$$:
$${\color{red}{\int{\left(- \frac{u^{2}}{u^{2} + 1}\right)d u}}} = {\color{red}{\left(- \int{\frac{u^{2}}{u^{2} + 1} d u}\right)}}$$
Herschrijf en splits de breuk:
$$- {\color{red}{\int{\frac{u^{2}}{u^{2} + 1} d u}}} = - {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}}$$
Integreer termgewijs:
$$- {\color{red}{\int{\left(1 - \frac{1}{u^{2} + 1}\right)d u}}} = - {\color{red}{\left(\int{1 d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}$$
Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:
$$\int{\frac{1}{u^{2} + 1} d u} - {\color{red}{\int{1 d u}}} = \int{\frac{1}{u^{2} + 1} d u} - {\color{red}{u}}$$
De integraal van $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:
$$- u + {\color{red}{\int{\frac{1}{u^{2} + 1} d u}}} = - u + {\color{red}{\operatorname{atan}{\left(u \right)}}}$$
We herinneren eraan dat $$$u=\cot{\left(x \right)}$$$:
$$\operatorname{atan}{\left({\color{red}{u}} \right)} - {\color{red}{u}} = \operatorname{atan}{\left({\color{red}{\cot{\left(x \right)}}} \right)} - {\color{red}{\cot{\left(x \right)}}}$$
Dus,
$$\int{\cot^{2}{\left(x \right)} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}$$
Voeg de integratieconstante toe:
$$\int{\cot^{2}{\left(x \right)} d x} = - \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}+C$$
Antwoord
$$$\int \cot^{2}{\left(x \right)}\, dx = \left(- \cot{\left(x \right)} + \operatorname{atan}{\left(\cot{\left(x \right)} \right)}\right) + C$$$A