Integraal van $$$\operatorname{atan}{\left(x \right)}$$$

De calculator zal de integraal/primitieve functie van $$$\operatorname{atan}{\left(x \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \operatorname{atan}{\left(x \right)}\, dx$$$.

Oplossing

Voor de integraal $$$\int{\operatorname{atan}{\left(x \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\operatorname{atan}{\left(x \right)}$$$ en $$$\operatorname{dv}=dx$$$.

Dan $$$\operatorname{du}=\left(\operatorname{atan}{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x^{2} + 1}$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{1 d x}=x$$$ (de stappen zijn te zien »).

Dus,

$${\color{red}{\int{\operatorname{atan}{\left(x \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(x \right)} \cdot x-\int{x \cdot \frac{1}{x^{2} + 1} d x}\right)}}={\color{red}{\left(x \operatorname{atan}{\left(x \right)} - \int{\frac{x}{x^{2} + 1} d x}\right)}}$$

Zij $$$u=x^{2} + 1$$$.

Dan $$$du=\left(x^{2} + 1\right)^{\prime }dx = 2 x dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$x dx = \frac{du}{2}$$$.

Dus,

$$x \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\frac{x}{x^{2} + 1} d x}}} = x \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 u} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$x \operatorname{atan}{\left(x \right)} - {\color{red}{\int{\frac{1}{2 u} d u}}} = x \operatorname{atan}{\left(x \right)} - {\color{red}{\left(\frac{\int{\frac{1}{u} d u}}{2}\right)}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$x \operatorname{atan}{\left(x \right)} - \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = x \operatorname{atan}{\left(x \right)} - \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=x^{2} + 1$$$:

$$x \operatorname{atan}{\left(x \right)} - \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} = x \operatorname{atan}{\left(x \right)} - \frac{\ln{\left(\left|{{\color{red}{\left(x^{2} + 1\right)}}}\right| \right)}}{2}$$

Dus,

$$\int{\operatorname{atan}{\left(x \right)} d x} = x \operatorname{atan}{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{\operatorname{atan}{\left(x \right)} d x} = x \operatorname{atan}{\left(x \right)} - \frac{\ln{\left(x^{2} + 1 \right)}}{2}+C$$

Antwoord

$$$\int \operatorname{atan}{\left(x \right)}\, dx = \left(x \operatorname{atan}{\left(x \right)} - \frac{\ln\left(x^{2} + 1\right)}{2}\right) + C$$$A


Please try a new game Rotatly