Integraal van $$$x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}$$$

De calculator zal de integraal/primitieve functie van $$$x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}\, dx$$$.

Oplossing

Voor de integraal $$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x}$$$, gebruik partiële integratie $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.

Zij $$$\operatorname{u}=\operatorname{atan}{\left(\sqrt{x} \right)}$$$ en $$$\operatorname{dv}=x^{2} dx$$$.

Dan $$$\operatorname{du}=\left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)^{\prime }dx=\frac{1}{2 \sqrt{x} \left(x + 1\right)} dx$$$ (de stappen zijn te zien ») en $$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$ (de stappen zijn te zien »).

De integraal kan worden herschreven als

$${\color{red}{\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(\sqrt{x} \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{2 \sqrt{x} \left(x + 1\right)} d x}\right)}}={\color{red}{\left(\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \int{\frac{x^{\frac{5}{2}}}{6 x + 6} d x}\right)}}$$

Vereenvoudig de integraand:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 x + 6} d x}}} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 \left(x + 1\right)} d x}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{6}$$$ en $$$f{\left(x \right)} = \frac{x^{\frac{5}{2}}}{x + 1}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 \left(x + 1\right)} d x}}} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\left(\frac{\int{\frac{x^{\frac{5}{2}}}{x + 1} d x}}{6}\right)}}$$

Zij $$$u=\sqrt{x}$$$.

Dan $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\frac{dx}{\sqrt{x}} = 2 du$$$.

Dus,

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{x^{\frac{5}{2}}}{x + 1} d x}}}}{6} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{2 u^{6}}{u^{2} + 1} d u}}}}{6}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=2$$$ en $$$f{\left(u \right)} = \frac{u^{6}}{u^{2} + 1}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{2 u^{6}}{u^{2} + 1} d u}}}}{6} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\left(2 \int{\frac{u^{6}}{u^{2} + 1} d u}\right)}}}{6}$$

Aangezien de graad van de teller niet kleiner is dan die van de noemer, voer een staartdeling van polynomen uit (stappen zijn te zien »):

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}}{3}$$

Integreer termgewijs:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\left(\int{1 d u} - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{3}$$

Pas de constantenregel $$$\int c\, du = c u$$$ toe met $$$c=1$$$:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} - \frac{\int{u^{4} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\int{1 d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} - \frac{\int{u^{4} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{u}}}{3}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=4$$$:

$$- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\int{u^{4} d u}}}}{3}=- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

De integraal van $$$\frac{1}{u^{2} + 1}$$$ is $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$:

$$- \frac{u^{5}}{15} + \frac{u^{3}}{9} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{3} = - \frac{u^{5}}{15} + \frac{u^{3}}{9} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{3}$$

We herinneren eraan dat $$$u=\sqrt{x}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{3} - \frac{{\color{red}{u}}}{3} + \frac{{\color{red}{u}}^{3}}{9} - \frac{{\color{red}{u}}^{5}}{15} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left({\color{red}{\sqrt{x}}} \right)}}{3} - \frac{{\color{red}{\sqrt{x}}}}{3} + \frac{{\color{red}{\sqrt{x}}}^{3}}{9} - \frac{{\color{red}{\sqrt{x}}}^{5}}{15}$$

Dus,

$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}$$

Voeg de integratieconstante toe:

$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}+C$$

Antwoord

$$$\int x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}\, dx = \left(- \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}\right) + C$$$A


Please try a new game Rotatly