$$$x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}$$$の積分

この計算機は、手順を示しながら$$$x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}\, dx$$$ を求めよ。

解答

積分 $$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x}$$$ には、部分積分法$$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$を用いてください。

$$$\operatorname{u}=\operatorname{atan}{\left(\sqrt{x} \right)}$$$$$$\operatorname{dv}=x^{2} dx$$$ とする。

したがって、$$$\operatorname{du}=\left(\operatorname{atan}{\left(\sqrt{x} \right)}\right)^{\prime }dx=\frac{1}{2 \sqrt{x} \left(x + 1\right)} dx$$$(手順は»を参照)および$$$\operatorname{v}=\int{x^{2} d x}=\frac{x^{3}}{3}$$$(手順は»を参照)。

積分は次のようになります

$${\color{red}{\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x}}}={\color{red}{\left(\operatorname{atan}{\left(\sqrt{x} \right)} \cdot \frac{x^{3}}{3}-\int{\frac{x^{3}}{3} \cdot \frac{1}{2 \sqrt{x} \left(x + 1\right)} d x}\right)}}={\color{red}{\left(\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \int{\frac{x^{\frac{5}{2}}}{6 x + 6} d x}\right)}}$$

被積分関数を簡単化する:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 x + 6} d x}}} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 \left(x + 1\right)} d x}}}$$

定数倍の法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ を、$$$c=\frac{1}{6}$$$$$$f{\left(x \right)} = \frac{x^{\frac{5}{2}}}{x + 1}$$$ に対して適用する:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\int{\frac{x^{\frac{5}{2}}}{6 \left(x + 1\right)} d x}}} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - {\color{red}{\left(\frac{\int{\frac{x^{\frac{5}{2}}}{x + 1} d x}}{6}\right)}}$$

$$$u=\sqrt{x}$$$ とする。

すると $$$du=\left(\sqrt{x}\right)^{\prime }dx = \frac{1}{2 \sqrt{x}} dx$$$(手順は»で確認できます)、$$$\frac{dx}{\sqrt{x}} = 2 du$$$ となります。

この積分は次のように書き換えられる

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{x^{\frac{5}{2}}}{x + 1} d x}}}}{6} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{2 u^{6}}{u^{2} + 1} d u}}}}{6}$$

定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=2$$$$$$f{\left(u \right)} = \frac{u^{6}}{u^{2} + 1}$$$ に対して適用する:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{2 u^{6}}{u^{2} + 1} d u}}}}{6} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\left(2 \int{\frac{u^{6}}{u^{2} + 1} d u}\right)}}}{6}$$

分子の次数が分母の次数以上であるため、多項式の長除法を行います(手順は»で確認できます):

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\frac{u^{6}}{u^{2} + 1} d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}}{3}$$

項別に積分せよ:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\int{\left(u^{4} - u^{2} + 1 - \frac{1}{u^{2} + 1}\right)d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} - \frac{{\color{red}{\left(\int{1 d u} - \int{u^{2} d u} + \int{u^{4} d u} - \int{\frac{1}{u^{2} + 1} d u}\right)}}}{3}$$

$$$c=1$$$ に対して定数則 $$$\int c\, du = c u$$$ を適用する:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} - \frac{\int{u^{4} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\int{1 d u}}}}{3} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} - \frac{\int{u^{4} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{u}}}{3}$$

$$$n=4$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\int{u^{4} d u}}}}{3}=- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\frac{u^{1 + 4}}{1 + 4}}}}{3}=- \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{u^{2} d u}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} - \frac{{\color{red}{\left(\frac{u^{5}}{5}\right)}}}{3}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\int{u^{2} d u}}}}{3}=- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\frac{u^{1 + 2}}{1 + 2}}}}{3}=- \frac{u^{5}}{15} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\int{\frac{1}{u^{2} + 1} d u}}{3} + \frac{{\color{red}{\left(\frac{u^{3}}{3}\right)}}}{3}$$

$$$\frac{1}{u^{2} + 1}$$$ の不定積分は $$$\int{\frac{1}{u^{2} + 1} d u} = \operatorname{atan}{\left(u \right)}$$$ です:

$$- \frac{u^{5}}{15} + \frac{u^{3}}{9} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{{\color{red}{\int{\frac{1}{u^{2} + 1} d u}}}}{3} = - \frac{u^{5}}{15} + \frac{u^{3}}{9} - \frac{u}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{{\color{red}{\operatorname{atan}{\left(u \right)}}}}{3}$$

次のことを思い出してください $$$u=\sqrt{x}$$$:

$$\frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left({\color{red}{u}} \right)}}{3} - \frac{{\color{red}{u}}}{3} + \frac{{\color{red}{u}}^{3}}{9} - \frac{{\color{red}{u}}^{5}}{15} = \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left({\color{red}{\sqrt{x}}} \right)}}{3} - \frac{{\color{red}{\sqrt{x}}}}{3} + \frac{{\color{red}{\sqrt{x}}}^{3}}{9} - \frac{{\color{red}{\sqrt{x}}}^{5}}{15}$$

したがって、

$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}$$

積分定数を加える:

$$\int{x^{2} \operatorname{atan}{\left(\sqrt{x} \right)} d x} = - \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}+C$$

解答

$$$\int x^{2} \operatorname{atan}{\left(\sqrt{x} \right)}\, dx = \left(- \frac{x^{\frac{5}{2}}}{15} + \frac{x^{\frac{3}{2}}}{9} - \frac{\sqrt{x}}{3} + \frac{x^{3} \operatorname{atan}{\left(\sqrt{x} \right)}}{3} + \frac{\operatorname{atan}{\left(\sqrt{x} \right)}}{3}\right) + C$$$A


Please try a new game Rotatly