Integraal van $$$4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$

De calculator zal de integraal/primitieve functie van $$$4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int 4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\, dx$$$.

Oplossing

Herschrijf $$$\sin\left(x \right)\cos\left(\frac{x}{2} \right)$$$ met behulp van de formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ met $$$\alpha=x$$$ en $$$\beta=\frac{x}{2}$$$:

$${\color{red}{\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}} = {\color{red}{\int{4 \left(\frac{\sin{\left(\frac{x}{2} \right)}}{2} + \frac{\sin{\left(\frac{3 x}{2} \right)}}{2}\right) \cos{\left(\frac{3 x}{2} \right)} d x}}}$$

Werk de uitdrukking uit:

$${\color{red}{\int{4 \left(\frac{\sin{\left(\frac{x}{2} \right)}}{2} + \frac{\sin{\left(\frac{3 x}{2} \right)}}{2}\right) \cos{\left(\frac{3 x}{2} \right)} d x}}} = {\color{red}{\int{\left(2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 2 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = 4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$:

$${\color{red}{\int{\left(2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 2 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}{2}\right)}}$$

Integreer termgewijs:

$$\frac{{\color{red}{\int{\left(4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} + \int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}\right)}}}{2}$$

Herschrijf $$$\sin\left(\frac{x}{2} \right)\cos\left(\frac{3 x}{2} \right)$$$ met behulp van de formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ met $$$\alpha=\frac{x}{2}$$$ en $$$\beta=\frac{3 x}{2}$$$:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}}}{2} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 2 \sin{\left(x \right)} + 2 \sin{\left(2 x \right)}\right)d x}}}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(x \right)} = - 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}$$$:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 2 \sin{\left(x \right)} + 2 \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}\right)d x}}{2}\right)}}}{2}$$

Integreer termgewijs:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}\right)d x}}}}{4} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{4 \sin{\left(x \right)} d x} + \int{4 \sin{\left(2 x \right)} d x}\right)}}}{4}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(x \right)} d x}}}}{4} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(4 \int{\sin{\left(x \right)} d x}\right)}}}{4}$$

De integraal van de sinus is $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$:

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{4 \sin{\left(2 x \right)} d x}}}}{4} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(4 \int{\sin{\left(2 x \right)} d x}\right)}}}{4}$$

Zij $$$u=2 x$$$.

Dan $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.

De integraal kan worden herschreven als

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

De integraal van de sinus is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$

We herinneren eraan dat $$$u=2 x$$$:

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{2} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=4$$$ en $$$f{\left(x \right)} = \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$:

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}}}{2} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\left(4 \int{\sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}\right)}}}{2}$$

Zij $$$u=\sin{\left(\frac{3 x}{2} \right)}$$$.

Dan $$$du=\left(\sin{\left(\frac{3 x}{2} \right)}\right)^{\prime }dx = \frac{3 \cos{\left(\frac{3 x}{2} \right)}}{2} dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\cos{\left(\frac{3 x}{2} \right)} dx = \frac{2 du}{3}$$$.

De integraal kan worden herschreven als

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\frac{2 u}{3} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{2}{3}$$$ en $$$f{\left(u \right)} = u$$$:

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\frac{2 u}{3} d u}}} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\left(\frac{2 \int{u d u}}{3}\right)}}$$

Pas de machtsregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=1$$$:

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\int{u d u}}}}{3}=\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{3}=\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{3}$$

We herinneren eraan dat $$$u=\sin{\left(\frac{3 x}{2} \right)}$$$:

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{2 {\color{red}{u}}^{2}}{3} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{2 {\color{red}{\sin{\left(\frac{3 x}{2} \right)}}}^{2}}{3}$$

Dus,

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = \frac{2 \sin^{2}{\left(\frac{3 x}{2} \right)}}{3} + \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2}$$

Vereenvoudig:

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = - \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3} + \frac{5}{6}$$

Voeg de constante van integratie toe (en verwijder de constante uit de uitdrukking):

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = - \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}+C$$

Antwoord

$$$\int 4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\, dx = \left(- \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}\right) + C$$$A


Please try a new game Rotatly