Intégrale de $$$4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$

La calculatrice trouvera l’intégrale/primitive de $$$4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int 4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\, dx$$$.

Solution

Réécrivez $$$\sin\left(x \right)\cos\left(\frac{x}{2} \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=x$$$ et $$$\beta=\frac{x}{2}$$$:

$${\color{red}{\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}} = {\color{red}{\int{4 \left(\frac{\sin{\left(\frac{x}{2} \right)}}{2} + \frac{\sin{\left(\frac{3 x}{2} \right)}}{2}\right) \cos{\left(\frac{3 x}{2} \right)} d x}}}$$

Développez l'expression:

$${\color{red}{\int{4 \left(\frac{\sin{\left(\frac{x}{2} \right)}}{2} + \frac{\sin{\left(\frac{3 x}{2} \right)}}{2}\right) \cos{\left(\frac{3 x}{2} \right)} d x}}} = {\color{red}{\int{\left(2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 2 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = 4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$ :

$${\color{red}{\int{\left(2 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 2 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}} = {\color{red}{\left(\frac{\int{\left(4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}{2}\right)}}$$

Intégrez terme à terme:

$$\frac{{\color{red}{\int{\left(4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} + 4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\right)d x}}}}{2} = \frac{{\color{red}{\left(\int{4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} + \int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}\right)}}}{2}$$

Réécrivez $$$\sin\left(\frac{x}{2} \right)\cos\left(\frac{3 x}{2} \right)$$$ à l'aide de la formule $$$\sin\left(\alpha \right)\cos\left(\beta \right)=\frac{1}{2} \sin\left(\alpha-\beta \right)+\frac{1}{2} \sin\left(\alpha+\beta \right)$$$ avec $$$\alpha=\frac{x}{2}$$$ et $$$\beta=\frac{3 x}{2}$$$:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{4 \sin{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}}}{2} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 2 \sin{\left(x \right)} + 2 \sin{\left(2 x \right)}\right)d x}}}}{2}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(x \right)} = - 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}$$$ :

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 2 \sin{\left(x \right)} + 2 \sin{\left(2 x \right)}\right)d x}}}}{2} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(\frac{\int{\left(- 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}\right)d x}}{2}\right)}}}{2}$$

Intégrez terme à terme:

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\left(- 4 \sin{\left(x \right)} + 4 \sin{\left(2 x \right)}\right)d x}}}}{4} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(- \int{4 \sin{\left(x \right)} d x} + \int{4 \sin{\left(2 x \right)} d x}\right)}}}{4}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \sin{\left(x \right)}$$$ :

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\int{4 \sin{\left(x \right)} d x}}}}{4} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - \frac{{\color{red}{\left(4 \int{\sin{\left(x \right)} d x}\right)}}}{4}$$

L’intégrale du sinus est $$$\int{\sin{\left(x \right)} d x} = - \cos{\left(x \right)}$$$ :

$$\frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - {\color{red}{\int{\sin{\left(x \right)} d x}}} = \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{\int{4 \sin{\left(2 x \right)} d x}}{4} - {\color{red}{\left(- \cos{\left(x \right)}\right)}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \sin{\left(2 x \right)}$$$ :

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{4 \sin{\left(2 x \right)} d x}}}}{4} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(4 \int{\sin{\left(2 x \right)} d x}\right)}}}{4}$$

Soit $$$u=2 x$$$.

Alors $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$dx = \frac{du}{2}$$$.

Donc,

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\sin{\left(2 x \right)} d x}}} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ :

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + {\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}$$

L’intégrale du sinus est $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$ :

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{2} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} + \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{2}$$

Rappelons que $$$u=2 x$$$ :

$$\cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} - \frac{\cos{\left({\color{red}{u}} \right)}}{2} = \cos{\left(x \right)} + \frac{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}{2} - \frac{\cos{\left({\color{red}{\left(2 x\right)}} \right)}}{2}$$

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=4$$$ et $$$f{\left(x \right)} = \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}$$$ :

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\int{4 \sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}}}{2} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{{\color{red}{\left(4 \int{\sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}\right)}}}{2}$$

Soit $$$u=\sin{\left(\frac{3 x}{2} \right)}$$$.

Alors $$$du=\left(\sin{\left(\frac{3 x}{2} \right)}\right)^{\prime }dx = \frac{3 \cos{\left(\frac{3 x}{2} \right)}}{2} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\cos{\left(\frac{3 x}{2} \right)} dx = \frac{2 du}{3}$$$.

Par conséquent,

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\sin{\left(\frac{3 x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x}}} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\frac{2 u}{3} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{2}{3}$$$ et $$$f{\left(u \right)} = u$$$ :

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\int{\frac{2 u}{3} d u}}} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + 2 {\color{red}{\left(\frac{2 \int{u d u}}{3}\right)}}$$

Appliquer la règle de puissance $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ avec $$$n=1$$$ :

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\int{u d u}}}}{3}=\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\frac{u^{1 + 1}}{1 + 1}}}}{3}=\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{4 {\color{red}{\left(\frac{u^{2}}{2}\right)}}}{3}$$

Rappelons que $$$u=\sin{\left(\frac{3 x}{2} \right)}$$$ :

$$\cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{2 {\color{red}{u}}^{2}}{3} = \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2} + \frac{2 {\color{red}{\sin{\left(\frac{3 x}{2} \right)}}}^{2}}{3}$$

Par conséquent,

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = \frac{2 \sin^{2}{\left(\frac{3 x}{2} \right)}}{3} + \cos{\left(x \right)} - \frac{\cos{\left(2 x \right)}}{2}$$

Simplifier:

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = - \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3} + \frac{5}{6}$$

Ajoutez la constante d'intégration (et supprimez la constante de l'expression) :

$$\int{4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)} d x} = - \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}+C$$

Réponse

$$$\int 4 \sin{\left(x \right)} \cos{\left(\frac{x}{2} \right)} \cos{\left(\frac{3 x}{2} \right)}\, dx = \left(- \cos^{2}{\left(x \right)} + \cos{\left(x \right)} - \frac{\cos{\left(3 x \right)}}{3}\right) + C$$$A


Please try a new game Rotatly