Integraal van $$$2 \cos{\left(2 x \right)}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int 2 \cos{\left(2 x \right)}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=2$$$ en $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:
$${\color{red}{\int{2 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}$$
Zij $$$u=2 x$$$.
Dan $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$dx = \frac{du}{2}$$$.
Dus,
$$2 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$
Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:
$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$
De integraal van de cosinus is $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:
$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$
We herinneren eraan dat $$$u=2 x$$$:
$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$
Dus,
$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}$$
Voeg de integratieconstante toe:
$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}+C$$
Antwoord
$$$\int 2 \cos{\left(2 x \right)}\, dx = \sin{\left(2 x \right)} + C$$$A