Integral de $$$2 \cos{\left(2 x \right)}$$$

La calculadora encontrará la integral/antiderivada de $$$2 \cos{\left(2 x \right)}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int 2 \cos{\left(2 x \right)}\, dx$$$.

Solución

Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=2$$$ y $$$f{\left(x \right)} = \cos{\left(2 x \right)}$$$:

$${\color{red}{\int{2 \cos{\left(2 x \right)} d x}}} = {\color{red}{\left(2 \int{\cos{\left(2 x \right)} d x}\right)}}$$

Sea $$$u=2 x$$$.

Entonces $$$du=\left(2 x\right)^{\prime }dx = 2 dx$$$ (los pasos pueden verse »), y obtenemos que $$$dx = \frac{du}{2}$$$.

Por lo tanto,

$$2 {\color{red}{\int{\cos{\left(2 x \right)} d x}}} = 2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \cos{\left(u \right)}$$$:

$$2 {\color{red}{\int{\frac{\cos{\left(u \right)}}{2} d u}}} = 2 {\color{red}{\left(\frac{\int{\cos{\left(u \right)} d u}}{2}\right)}}$$

La integral del coseno es $$$\int{\cos{\left(u \right)} d u} = \sin{\left(u \right)}$$$:

$${\color{red}{\int{\cos{\left(u \right)} d u}}} = {\color{red}{\sin{\left(u \right)}}}$$

Recordemos que $$$u=2 x$$$:

$$\sin{\left({\color{red}{u}} \right)} = \sin{\left({\color{red}{\left(2 x\right)}} \right)}$$

Por lo tanto,

$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}$$

Añade la constante de integración:

$$\int{2 \cos{\left(2 x \right)} d x} = \sin{\left(2 x \right)}+C$$

Respuesta

$$$\int 2 \cos{\left(2 x \right)}\, dx = \sin{\left(2 x \right)} + C$$$A


Please try a new game Rotatly