Integraal van $$$\frac{1}{\sin^{2}{\left(x \right)}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx$$$.
Oplossing
Herschrijf de integraand in termen van de cosecans:
$${\color{red}{\int{\frac{1}{\sin^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\csc^{2}{\left(x \right)} d x}}}$$
De integraal van $$$\csc^{2}{\left(x \right)}$$$ is $$$\int{\csc^{2}{\left(x \right)} d x} = - \cot{\left(x \right)}$$$:
$${\color{red}{\int{\csc^{2}{\left(x \right)} d x}}} = {\color{red}{\left(- \cot{\left(x \right)}\right)}}$$
Dus,
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}$$
Voeg de integratieconstante toe:
$$\int{\frac{1}{\sin^{2}{\left(x \right)}} d x} = - \cot{\left(x \right)}+C$$
Antwoord
$$$\int \frac{1}{\sin^{2}{\left(x \right)}}\, dx = - \cot{\left(x \right)} + C$$$A