Integraal van $$$8 x^{6} - 5$$$

De calculator zal de integraal/primitieve functie van $$$8 x^{6} - 5$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(8 x^{6} - 5\right)\, dx$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(8 x^{6} - 5\right)d x}}} = {\color{red}{\left(- \int{5 d x} + \int{8 x^{6} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=5$$$:

$$\int{8 x^{6} d x} - {\color{red}{\int{5 d x}}} = \int{8 x^{6} d x} - {\color{red}{\left(5 x\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=8$$$ en $$$f{\left(x \right)} = x^{6}$$$:

$$- 5 x + {\color{red}{\int{8 x^{6} d x}}} = - 5 x + {\color{red}{\left(8 \int{x^{6} d x}\right)}}$$

Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=6$$$:

$$- 5 x + 8 {\color{red}{\int{x^{6} d x}}}=- 5 x + 8 {\color{red}{\frac{x^{1 + 6}}{1 + 6}}}=- 5 x + 8 {\color{red}{\left(\frac{x^{7}}{7}\right)}}$$

Dus,

$$\int{\left(8 x^{6} - 5\right)d x} = \frac{8 x^{7}}{7} - 5 x$$

Vereenvoudig:

$$\int{\left(8 x^{6} - 5\right)d x} = \frac{x \left(8 x^{6} - 35\right)}{7}$$

Voeg de integratieconstante toe:

$$\int{\left(8 x^{6} - 5\right)d x} = \frac{x \left(8 x^{6} - 35\right)}{7}+C$$

Antwoord

$$$\int \left(8 x^{6} - 5\right)\, dx = \frac{x \left(8 x^{6} - 35\right)}{7} + C$$$A


Please try a new game Rotatly