Integraal van $$$\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}$$$ met betrekking tot $$$x$$$

De rekenmachine zal de integraal/primitieve van $$$\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}$$$ met betrekking tot $$$x$$$ bepalen, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}\, dx$$$.

Oplossing

Herschrijf de integraand:

$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x}}} = {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}} d x}}}$$

Herschrijf de teller en splits de breuk:

$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)}\right)d x}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x} + \int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}\right)}}$$

Pas de constantenregel $$$\int c\, dx = c x$$$ toe met $$$c=\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$:

$$\int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x}}} = \int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$

Zij $$$u=\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}$$$.

Dan $$$du=\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right)^{\prime }dx = \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) dx$$$ (de stappen zijn te zien »), en dan geldt dat $$$\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) dx = du$$$.

De integraal wordt

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ toe met $$$c=\frac{\sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$ en $$$f{\left(u \right)} = \frac{1}{u}$$$:

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\frac{\sin{\left(a \right)} \int{\frac{1}{u} d u}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\int{\frac{1}{u} d u}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

We herinneren eraan dat $$$u=\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}$$$:

$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right)}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

Dus,

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$

Vereenvoudig:

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\cos{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}$$

Voeg de integratieconstante toe:

$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\cos{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}+C$$

Antwoord

$$$\int \frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}\, dx = \left(x \cos{\left(a \right)} + \ln\left(\left|{\cos{\left(a - x \right)}}\right|\right) \sin{\left(a \right)}\right) + C$$$A


Please try a new game Rotatly