Ολοκλήρωμα της $$$\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}$$$ ως προς $$$x$$$
Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος
Η είσοδός σας
Βρείτε $$$\int \frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}\, dx$$$.
Λύση
Ξαναγράψτε την ολοκληρωτέα συνάρτηση:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x}}} = {\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}} d x}}}$$
Ξαναγράψτε τον αριθμητή και διασπάστε το κλάσμα:
$${\color{red}{\int{\frac{\cos{\left(x \right)}}{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\left(\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)}\right)d x}}}$$
Ολοκληρώστε όρο προς όρο:
$${\color{red}{\int{\left(\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)}\right)d x}}} = {\color{red}{\left(\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x} + \int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}\right)}}$$
Εφαρμόστε τον κανόνα της σταθεράς $$$\int c\, dx = c x$$$ με $$$c=\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$:
$$\int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\int{\frac{\cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} d x}}} = \int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x} + {\color{red}{\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$
Έστω $$$u=\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}$$$.
Τότε $$$du=\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right)^{\prime }dx = \left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) dx$$$ (τα βήματα παρουσιάζονται »), και έχουμε ότι $$$\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) dx = du$$$.
Επομένως,
$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\left(\sin{\left(a \right)} \cos{\left(x \right)} - \sin{\left(x \right)} \cos{\left(a \right)}\right) \sin{\left(a \right)}}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right) \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d x}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}}$$
Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ με $$$c=\frac{\sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$$ και $$$f{\left(u \right)} = \frac{1}{u}$$$:
$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\int{\frac{\sin{\left(a \right)}}{u \left(\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}\right)} d u}}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + {\color{red}{\frac{\sin{\left(a \right)} \int{\frac{1}{u} d u}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}}}$$
Το ολοκλήρωμα του $$$\frac{1}{u}$$$ είναι $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\int{\frac{1}{u} d u}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\sin{\left(a \right)} {\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$
Θυμηθείτε ότι $$$u=\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}$$$:
$$\frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{{\color{red}{\left(\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}\right)}}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$
Επομένως,
$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = \frac{x \cos{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}} + \frac{\ln{\left(\left|{\sin{\left(a \right)} \sin{\left(x \right)} + \cos{\left(a \right)} \cos{\left(x \right)}}\right| \right)} \sin{\left(a \right)}}{\sin^{2}{\left(a \right)} + \cos^{2}{\left(a \right)}}$$
Απλοποιήστε:
$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\cos{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}$$
Προσθέστε τη σταθερά ολοκλήρωσης:
$$\int{\frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}} d x} = x \cos{\left(a \right)} + \ln{\left(\left|{\cos{\left(a - x \right)}}\right| \right)} \sin{\left(a \right)}+C$$
Απάντηση
$$$\int \frac{\cos{\left(x \right)}}{\cos{\left(a - x \right)}}\, dx = \left(x \cos{\left(a \right)} + \ln\left(\left|{\cos{\left(a - x \right)}}\right|\right) \sin{\left(a \right)}\right) + C$$$A