Integraal van $$$\frac{3}{14641 x^{2}}$$$
Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen
Uw invoer
Bepaal $$$\int \frac{3}{14641 x^{2}}\, dx$$$.
Oplossing
Pas de constante-veelvoudregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ toe met $$$c=\frac{3}{14641}$$$ en $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{3}{14641 x^{2}} d x}}} = {\color{red}{\left(\frac{3 \int{\frac{1}{x^{2}} d x}}{14641}\right)}}$$
Pas de machtsregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=-2$$$:
$$\frac{3 {\color{red}{\int{\frac{1}{x^{2}} d x}}}}{14641}=\frac{3 {\color{red}{\int{x^{-2} d x}}}}{14641}=\frac{3 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{14641}=\frac{3 {\color{red}{\left(- x^{-1}\right)}}}{14641}=\frac{3 {\color{red}{\left(- \frac{1}{x}\right)}}}{14641}$$
Dus,
$$\int{\frac{3}{14641 x^{2}} d x} = - \frac{3}{14641 x}$$
Voeg de integratieconstante toe:
$$\int{\frac{3}{14641 x^{2}} d x} = - \frac{3}{14641 x}+C$$
Antwoord
$$$\int \frac{3}{14641 x^{2}}\, dx = - \frac{3}{14641 x} + C$$$A