$$$\frac{3}{14641 x^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{3}{14641 x^{2}}\, dx$$$。
解答
套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{3}{14641}$$$ 與 $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:
$${\color{red}{\int{\frac{3}{14641 x^{2}} d x}}} = {\color{red}{\left(\frac{3 \int{\frac{1}{x^{2}} d x}}{14641}\right)}}$$
套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=-2$$$:
$$\frac{3 {\color{red}{\int{\frac{1}{x^{2}} d x}}}}{14641}=\frac{3 {\color{red}{\int{x^{-2} d x}}}}{14641}=\frac{3 {\color{red}{\frac{x^{-2 + 1}}{-2 + 1}}}}{14641}=\frac{3 {\color{red}{\left(- x^{-1}\right)}}}{14641}=\frac{3 {\color{red}{\left(- \frac{1}{x}\right)}}}{14641}$$
因此,
$$\int{\frac{3}{14641 x^{2}} d x} = - \frac{3}{14641 x}$$
加上積分常數:
$$\int{\frac{3}{14641 x^{2}} d x} = - \frac{3}{14641 x}+C$$
答案
$$$\int \frac{3}{14641 x^{2}}\, dx = - \frac{3}{14641 x} + C$$$A