Integraal van $$$- 3 y^{5} + y^{2}$$$

De calculator zal de integraal/primitieve functie van $$$- 3 y^{5} + y^{2}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \left(- 3 y^{5} + y^{2}\right)\, dy$$$.

Oplossing

Integreer termgewijs:

$${\color{red}{\int{\left(- 3 y^{5} + y^{2}\right)d y}}} = {\color{red}{\left(\int{y^{2} d y} - \int{3 y^{5} d y}\right)}}$$

Pas de machtsregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=2$$$:

$$- \int{3 y^{5} d y} + {\color{red}{\int{y^{2} d y}}}=- \int{3 y^{5} d y} + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- \int{3 y^{5} d y} + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ toe met $$$c=3$$$ en $$$f{\left(y \right)} = y^{5}$$$:

$$\frac{y^{3}}{3} - {\color{red}{\int{3 y^{5} d y}}} = \frac{y^{3}}{3} - {\color{red}{\left(3 \int{y^{5} d y}\right)}}$$

Pas de machtsregel $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ toe met $$$n=5$$$:

$$\frac{y^{3}}{3} - 3 {\color{red}{\int{y^{5} d y}}}=\frac{y^{3}}{3} - 3 {\color{red}{\frac{y^{1 + 5}}{1 + 5}}}=\frac{y^{3}}{3} - 3 {\color{red}{\left(\frac{y^{6}}{6}\right)}}$$

Dus,

$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}$$

Voeg de integratieconstante toe:

$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}+C$$

Antwoord

$$$\int \left(- 3 y^{5} + y^{2}\right)\, dy = \left(- \frac{y^{6}}{2} + \frac{y^{3}}{3}\right) + C$$$A


Please try a new game Rotatly