Integral of $$$- 3 y^{5} + y^{2}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \left(- 3 y^{5} + y^{2}\right)\, dy$$$.
Solution
Integrate term by term:
$${\color{red}{\int{\left(- 3 y^{5} + y^{2}\right)d y}}} = {\color{red}{\left(\int{y^{2} d y} - \int{3 y^{5} d y}\right)}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:
$$- \int{3 y^{5} d y} + {\color{red}{\int{y^{2} d y}}}=- \int{3 y^{5} d y} + {\color{red}{\frac{y^{1 + 2}}{1 + 2}}}=- \int{3 y^{5} d y} + {\color{red}{\left(\frac{y^{3}}{3}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(y \right)}\, dy = c \int f{\left(y \right)}\, dy$$$ with $$$c=3$$$ and $$$f{\left(y \right)} = y^{5}$$$:
$$\frac{y^{3}}{3} - {\color{red}{\int{3 y^{5} d y}}} = \frac{y^{3}}{3} - {\color{red}{\left(3 \int{y^{5} d y}\right)}}$$
Apply the power rule $$$\int y^{n}\, dy = \frac{y^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=5$$$:
$$\frac{y^{3}}{3} - 3 {\color{red}{\int{y^{5} d y}}}=\frac{y^{3}}{3} - 3 {\color{red}{\frac{y^{1 + 5}}{1 + 5}}}=\frac{y^{3}}{3} - 3 {\color{red}{\left(\frac{y^{6}}{6}\right)}}$$
Therefore,
$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}$$
Add the constant of integration:
$$\int{\left(- 3 y^{5} + y^{2}\right)d y} = - \frac{y^{6}}{2} + \frac{y^{3}}{3}+C$$
Answer
$$$\int \left(- 3 y^{5} + y^{2}\right)\, dy = \left(- \frac{y^{6}}{2} + \frac{y^{3}}{3}\right) + C$$$A