Afgeleide van $$$x \sin{\left(x \right)}$$$

De rekenmachine vindt de afgeleide van $$$x \sin{\left(x \right)}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right)$$$.

Oplossing

Pas de productregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe op $$$f{\left(x \right)} = x$$$ en $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(x \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) \sin{\left(x \right)} + x \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$x \frac{d}{dx} \left(\sin{\left(x \right)}\right) + \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = x \frac{d}{dx} \left(\sin{\left(x \right)}\right) + \sin{\left(x \right)} {\color{red}\left(1\right)}$$

De afgeleide van de sinus is $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$x {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \sin{\left(x \right)} = x {\color{red}\left(\cos{\left(x \right)}\right)} + \sin{\left(x \right)}$$

Dus, $$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right) = x \cos{\left(x \right)} + \sin{\left(x \right)}$$$.

Antwoord

$$$\frac{d}{dx} \left(x \sin{\left(x \right)}\right) = x \cos{\left(x \right)} + \sin{\left(x \right)}$$$A


Please try a new game Rotatly