Afgeleide van $$$x + \sin{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)$$$.
Oplossing
De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:
$${\color{red}\left(\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$De afgeleide van de sinus is $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x\right)$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(1\right)}$$Dus, $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$.
Antwoord
$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$A