Afgeleide van $$$x^{4} - 6 x^{2}$$$

De rekenmachine vindt de afgeleide van $$$x^{4} - 6 x^{2}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)$$$.

Oplossing

De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:

$${\color{red}\left(\frac{d}{dx} \left(x^{4} - 6 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{4}\right) - \frac{d}{dx} \left(6 x^{2}\right)\right)}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 4$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{4}\right)\right)} - \frac{d}{dx} \left(6 x^{2}\right) = {\color{red}\left(4 x^{3}\right)} - \frac{d}{dx} \left(6 x^{2}\right)$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 6$$$ en $$$f{\left(x \right)} = x^{2}$$$:

$$4 x^{3} - {\color{red}\left(\frac{d}{dx} \left(6 x^{2}\right)\right)} = 4 x^{3} - {\color{red}\left(6 \frac{d}{dx} \left(x^{2}\right)\right)}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 2$$$:

$$4 x^{3} - 6 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} = 4 x^{3} - 6 {\color{red}\left(2 x\right)}$$

Vereenvoudig:

$$4 x^{3} - 12 x = 4 x \left(x^{2} - 3\right)$$

Dus, $$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$.

Antwoord

$$$\frac{d}{dx} \left(x^{4} - 6 x^{2}\right) = 4 x \left(x^{2} - 3\right)$$$A


Please try a new game Rotatly