Afgeleide van $$$x^{3} - 2 x$$$ in $$$x = c$$$

De rekenmachine zal de afgeleide van $$$x^{3} - 2 x$$$ in het punt $$$x = c$$$ vinden, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(x^{3} - 2 x\right)$$$ en evalueer het in $$$x = c$$$.

Oplossing

De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:

$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x\right)\right)}$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 2$$$ en $$$f{\left(x \right)} = x$$$:

$$- {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - 2 {\color{red}\left(1\right)} + \frac{d}{dx} \left(x^{3}\right)$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 3$$$:

$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - 2 = {\color{red}\left(3 x^{2}\right)} - 2$$

Dus, $$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$.

Bereken ten slotte de afgeleide in het punt $$$x = c$$$.

$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$

Antwoord

$$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$A

$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$A


Please try a new game Rotatly