Afgeleide van $$$\frac{x}{c}$$$ naar $$$x$$$

De rekenmachine berekent de afgeleide van $$$\frac{x}{c}$$$ naar $$$x$$$, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(\frac{x}{c}\right)$$$.

Oplossing

Pas de regel van de constante factor $$$\frac{d}{dx} \left(k f{\left(x \right)}\right) = k \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$k = \frac{1}{c}$$$ en $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{x}{c}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{c}\right)}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{c} = \frac{{\color{red}\left(1\right)}}{c}$$

Dus, $$$\frac{d}{dx} \left(\frac{x}{c}\right) = \frac{1}{c}$$$.

Antwoord

$$$\frac{d}{dx} \left(\frac{x}{c}\right) = \frac{1}{c}$$$A


Please try a new game Rotatly