Afgeleide van $$$\tan{\left(\frac{x}{2} \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right)$$$.
Oplossing
De functie $$$\tan{\left(\frac{x}{2} \right)}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \tan{\left(u \right)}$$$ en $$$g{\left(x \right)} = \frac{x}{2}$$$.
Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:
$${\color{red}\left(\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}$$De afgeleide van de tangens is $$$\frac{d}{du} \left(\tan{\left(u \right)}\right) = \sec^{2}{\left(u \right)}$$$:
$${\color{red}\left(\frac{d}{du} \left(\tan{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right) = {\color{red}\left(\sec^{2}{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$Keer terug naar de oorspronkelijke variabele:
$$\sec^{2}{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right) = \sec^{2}{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)$$Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = \frac{1}{2}$$$ en $$$f{\left(x \right)} = x$$$:
$$\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)} = \sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}$$Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{2} = \frac{\sec^{2}{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{2}$$Vereenvoudig:
$$\frac{\sec^{2}{\left(\frac{x}{2} \right)}}{2} = \frac{1}{\cos{\left(x \right)} + 1}$$Dus, $$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} + 1}$$$.
Antwoord
$$$\frac{d}{dx} \left(\tan{\left(\frac{x}{2} \right)}\right) = \frac{1}{\cos{\left(x \right)} + 1}$$$A