Afgeleide van $$$\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)$$$.
Oplossing
De functie $$$\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$$ is de samenstelling $$$f{\left(g{\left(u \right)} \right)}$$$ van twee functies $$$f{\left(v \right)} = \tan{\left(v \right)}$$$ en $$$g{\left(u \right)} = \frac{u}{2} + \frac{\pi}{4}$$$.
Pas de kettingregel $$$\frac{d}{du} \left(f{\left(g{\left(u \right)} \right)}\right) = \frac{d}{dv} \left(f{\left(v \right)}\right) \frac{d}{du} \left(g{\left(u \right)}\right)$$$ toe:
$${\color{red}\left(\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right)\right)} = {\color{red}\left(\frac{d}{dv} \left(\tan{\left(v \right)}\right) \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)\right)}$$De afgeleide van de tangens is $$$\frac{d}{dv} \left(\tan{\left(v \right)}\right) = \sec^{2}{\left(v \right)}$$$:
$${\color{red}\left(\frac{d}{dv} \left(\tan{\left(v \right)}\right)\right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right) = {\color{red}\left(\sec^{2}{\left(v \right)}\right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)$$Keer terug naar de oorspronkelijke variabele:
$$\sec^{2}{\left({\color{red}\left(v\right)} \right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right) = \sec^{2}{\left({\color{red}\left(\frac{u}{2} + \frac{\pi}{4}\right)} \right)} \frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)$$De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:
$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2} + \frac{\pi}{4}\right)\right)} = \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2}\right) + \frac{d}{du} \left(\frac{\pi}{4}\right)\right)}$$De afgeleide van een constante is $$$0$$$:
$$\left({\color{red}\left(\frac{d}{du} \left(\frac{\pi}{4}\right)\right)} + \frac{d}{du} \left(\frac{u}{2}\right)\right) \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} = \left({\color{red}\left(0\right)} + \frac{d}{du} \left(\frac{u}{2}\right)\right) \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}$$Pas de regel van de constante factor $$$\frac{d}{du} \left(c f{\left(u \right)}\right) = c \frac{d}{du} \left(f{\left(u \right)}\right)$$$ toe met $$$c = \frac{1}{2}$$$ en $$$f{\left(u \right)} = u$$$:
$$\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(\frac{u}{2}\right)\right)} = \sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{\frac{d}{du} \left(u\right)}{2}\right)}$$Pas de machtsregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{du} \left(u\right) = 1$$$:
$$\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(\frac{d}{du} \left(u\right)\right)}}{2} = \frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)} {\color{red}\left(1\right)}}{2}$$Vereenvoudig:
$$\frac{\sec^{2}{\left(\frac{u}{2} + \frac{\pi}{4} \right)}}{2} = \frac{1}{1 - \sin{\left(u \right)}}$$Dus, $$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(u \right)}}$$$.
Antwoord
$$$\frac{d}{du} \left(\tan{\left(\frac{u}{2} + \frac{\pi}{4} \right)}\right) = \frac{1}{1 - \sin{\left(u \right)}}$$$A