Afgeleide van $$$t \left(t - 1\right)$$$

De rekenmachine vindt de afgeleide van $$$t \left(t - 1\right)$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dt} \left(t \left(t - 1\right)\right)$$$.

Oplossing

Pas de productregel $$$\frac{d}{dt} \left(f{\left(t \right)} g{\left(t \right)}\right) = \frac{d}{dt} \left(f{\left(t \right)}\right) g{\left(t \right)} + f{\left(t \right)} \frac{d}{dt} \left(g{\left(t \right)}\right)$$$ toe op $$$f{\left(t \right)} = t$$$ en $$$g{\left(t \right)} = t - 1$$$:

$${\color{red}\left(\frac{d}{dt} \left(t \left(t - 1\right)\right)\right)} = {\color{red}\left(\frac{d}{dt} \left(t\right) \left(t - 1\right) + t \frac{d}{dt} \left(t - 1\right)\right)}$$

Pas de machtsregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} = t \frac{d}{dt} \left(t - 1\right) + \left(t - 1\right) {\color{red}\left(1\right)}$$

De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:

$$t {\color{red}\left(\frac{d}{dt} \left(t - 1\right)\right)} + t - 1 = t {\color{red}\left(\frac{d}{dt} \left(t\right) - \frac{d}{dt} \left(1\right)\right)} + t - 1$$

De afgeleide van een constante is $$$0$$$:

$$t \left(- {\color{red}\left(\frac{d}{dt} \left(1\right)\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1 = t \left(- {\color{red}\left(0\right)} + \frac{d}{dt} \left(t\right)\right) + t - 1$$

Pas de machtsregel $$$\frac{d}{dt} \left(t^{n}\right) = n t^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dt} \left(t\right) = 1$$$:

$$t {\color{red}\left(\frac{d}{dt} \left(t\right)\right)} + t - 1 = t {\color{red}\left(1\right)} + t - 1$$

Dus, $$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$.

Antwoord

$$$\frac{d}{dt} \left(t \left(t - 1\right)\right) = 2 t - 1$$$A


Please try a new game Rotatly