Afgeleide van $$$\sec{\left(\theta \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right)$$$.
Oplossing
De afgeleide van de secans is $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$:
$${\color{red}\left(\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right)\right)} = {\color{red}\left(\tan{\left(\theta \right)} \sec{\left(\theta \right)}\right)}$$Dus, $$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$.
Antwoord
$$$\frac{d}{d\theta} \left(\sec{\left(\theta \right)}\right) = \tan{\left(\theta \right)} \sec{\left(\theta \right)}$$$A