Afgeleide van $$$\ln^{2}\left(x\right)$$$

De rekenmachine vindt de afgeleide van $$$\ln^{2}\left(x\right)$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)$$$.

Oplossing

De functie $$$\ln^{2}\left(x\right)$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = u^{2}$$$ en $$$g{\left(x \right)} = \ln\left(x\right)$$$.

Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:

$${\color{red}\left(\frac{d}{dx} \left(\ln^{2}\left(x\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(u^{2}\right) \frac{d}{dx} \left(\ln\left(x\right)\right)\right)}$$

Pas de machtsregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ toe met $$$n = 2$$$:

$${\color{red}\left(\frac{d}{du} \left(u^{2}\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = {\color{red}\left(2 u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

Keer terug naar de oorspronkelijke variabele:

$$2 {\color{red}\left(u\right)} \frac{d}{dx} \left(\ln\left(x\right)\right) = 2 {\color{red}\left(\ln\left(x\right)\right)} \frac{d}{dx} \left(\ln\left(x\right)\right)$$

De afgeleide van de natuurlijke logaritme is $$$\frac{d}{dx} \left(\ln\left(x\right)\right) = \frac{1}{x}$$$:

$$2 \ln\left(x\right) {\color{red}\left(\frac{d}{dx} \left(\ln\left(x\right)\right)\right)} = 2 \ln\left(x\right) {\color{red}\left(\frac{1}{x}\right)}$$

Dus, $$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$.

Antwoord

$$$\frac{d}{dx} \left(\ln^{2}\left(x\right)\right) = \frac{2 \ln\left(x\right)}{x}$$$A


Please try a new game Rotatly