Afgeleide van $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ naar $$$x$$$

De rekenmachine berekent de afgeleide van $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ naar $$$x$$$, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)$$$.

Oplossing

De functie $$$\ln\left(\frac{a^{2}}{x^{2}}\right)$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = \ln\left(u\right)$$$ en $$$g{\left(x \right)} = \frac{a^{2}}{x^{2}}$$$.

Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:

$${\color{red}\left(\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right) \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}$$

De afgeleide van de natuurlijke logaritme is $$$\frac{d}{du} \left(\ln\left(u\right)\right) = \frac{1}{u}$$$:

$${\color{red}\left(\frac{d}{du} \left(\ln\left(u\right)\right)\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right) = {\color{red}\left(\frac{1}{u}\right)} \frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)$$

Keer terug naar de oorspronkelijke variabele:

$$\frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(u\right)}} = \frac{\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)}{{\color{red}\left(\frac{a^{2}}{x^{2}}\right)}}$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = a^{2}$$$ en $$$f{\left(x \right)} = \frac{1}{x^{2}}$$$:

$$\frac{x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{a^{2}}{x^{2}}\right)\right)}}{a^{2}} = \frac{x^{2} {\color{red}\left(a^{2} \frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)}}{a^{2}}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = -2$$$:

$$x^{2} {\color{red}\left(\frac{d}{dx} \left(\frac{1}{x^{2}}\right)\right)} = x^{2} {\color{red}\left(- \frac{2}{x^{3}}\right)}$$

Dus, $$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$.

Antwoord

$$$\frac{d}{dx} \left(\ln\left(\frac{a^{2}}{x^{2}}\right)\right) = - \frac{2}{x}$$$A


Please try a new game Rotatly