Afgeleide van $$$e^{- x} \sin{\left(x \right)}$$$ in $$$x = c$$$

De rekenmachine zal de afgeleide van $$$e^{- x} \sin{\left(x \right)}$$$ in het punt $$$x = c$$$ vinden, waarbij de stappen worden getoond.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)$$$ en evalueer het in $$$x = c$$$.

Oplossing

Pas de productregel $$$\frac{d}{dx} \left(f{\left(x \right)} g{\left(x \right)}\right) = \frac{d}{dx} \left(f{\left(x \right)}\right) g{\left(x \right)} + f{\left(x \right)} \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe op $$$f{\left(x \right)} = e^{- x}$$$ en $$$g{\left(x \right)} = \sin{\left(x \right)}$$$:

$${\color{red}\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right) \sin{\left(x \right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$

De functie $$$e^{- x}$$$ is de samenstelling $$$f{\left(g{\left(x \right)} \right)}$$$ van twee functies $$$f{\left(u \right)} = e^{u}$$$ en $$$g{\left(x \right)} = - x$$$.

Pas de kettingregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ toe:

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

De afgeleide van de exponentiële functie is $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$\sin{\left(x \right)} {\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = \sin{\left(x \right)} {\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Keer terug naar de oorspronkelijke variabele:

$$e^{{\color{red}\left(u\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{{\color{red}\left(- x\right)}} \sin{\left(x \right)} \frac{d}{dx} \left(- x\right) + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = -1$$$ en $$$f{\left(x \right)} = x$$$:

$$e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right) = e^{- x} \sin{\left(x \right)} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)} + e^{- x} \frac{d}{dx} \left(\sin{\left(x \right)}\right)$$

De afgeleide van de sinus is $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:

$$- e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = - e^{- x} \sin{\left(x \right)} \frac{d}{dx} \left(x\right) + e^{- x} {\color{red}\left(\cos{\left(x \right)}\right)}$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- e^{- x} \sin{\left(x \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + e^{- x} \cos{\left(x \right)} = - e^{- x} \sin{\left(x \right)} {\color{red}\left(1\right)} + e^{- x} \cos{\left(x \right)}$$

Vereenvoudig:

$$- e^{- x} \sin{\left(x \right)} + e^{- x} \cos{\left(x \right)} = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$

Dus, $$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$.

Bereken ten slotte de afgeleide in het punt $$$x = c$$$.

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$

Antwoord

$$$\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right) = \sqrt{2} e^{- x} \cos{\left(x + \frac{\pi}{4} \right)}$$$A

$$$\left(\frac{d}{dx} \left(e^{- x} \sin{\left(x \right)}\right)\right)|_{\left(x = c\right)} = \sqrt{2} e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}\approx 1.414213562373095 e^{- c} \cos{\left(c + \frac{\pi}{4} \right)}$$$A


Please try a new game Rotatly