Afgeleide van $$$\operatorname{atanh}{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(\operatorname{atanh}{\left(x \right)}\right)$$$.
Oplossing
De afgeleide van de inverse hyperbolische tangens is $$$\frac{d}{dx} \left(\operatorname{atanh}{\left(x \right)}\right) = \frac{1}{1 - x^{2}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{atanh}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{1 - x^{2}}\right)}$$Vereenvoudig:
$$\frac{1}{1 - x^{2}} = - \frac{1}{x^{2} - 1}$$Dus, $$$\frac{d}{dx} \left(\operatorname{atanh}{\left(x \right)}\right) = - \frac{1}{x^{2} - 1}$$$.
Antwoord
$$$\frac{d}{dx} \left(\operatorname{atanh}{\left(x \right)}\right) = - \frac{1}{x^{2} - 1}$$$A
Please try a new game Rotatly