Afgeleide van $$$\operatorname{asec}{\left(x \right)}$$$

De rekenmachine vindt de afgeleide van $$$\operatorname{asec}{\left(x \right)}$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)$$$.

Oplossing

De afgeleide van de inverse secans is $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}}\right)}$$

Vereenvoudig:

$$\frac{1}{x^{2} \sqrt{1 - \frac{1}{x^{2}}}} = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$

Dus, $$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$.

Antwoord

$$$\frac{d}{dx} \left(\operatorname{asec}{\left(x \right)}\right) = \frac{\left|{x}\right|}{x^{2} \sqrt{x^{2} - 1}}$$$A


Please try a new game Rotatly