Afgeleide van $$$\operatorname{acosh}{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)$$$.
Oplossing
De afgeleide van de inverse hyperbolische cosinus is $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{1}{\sqrt{x - 1} \sqrt{x + 1}}\right)}$$Dus, $$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$.
Antwoord
$$$\frac{d}{dx} \left(\operatorname{acosh}{\left(x \right)}\right) = \frac{1}{\sqrt{x - 1} \sqrt{x + 1}}$$$A
Please try a new game Rotatly