Afgeleide van $$$9 x e^{2} - 4$$$

De rekenmachine vindt de afgeleide van $$$9 x e^{2} - 4$$$ en toont de stappen.

Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen

Leeg laten voor automatische detectie.
Laat leeg als u de afgeleide niet in een bepaald punt nodig hebt.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\frac{d}{dx} \left(9 x e^{2} - 4\right)$$$.

Oplossing

De afgeleide van een som/verschil is de som/het verschil van de afgeleiden:

$${\color{red}\left(\frac{d}{dx} \left(9 x e^{2} - 4\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(9 x e^{2}\right) - \frac{d}{dx} \left(4\right)\right)}$$

Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 9 e^{2}$$$ en $$$f{\left(x \right)} = x$$$:

$${\color{red}\left(\frac{d}{dx} \left(9 x e^{2}\right)\right)} - \frac{d}{dx} \left(4\right) = {\color{red}\left(9 e^{2} \frac{d}{dx} \left(x\right)\right)} - \frac{d}{dx} \left(4\right)$$

Pas de machtsregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ toe met $$$n = 1$$$, met andere woorden, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$9 e^{2} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} - \frac{d}{dx} \left(4\right) = 9 e^{2} {\color{red}\left(1\right)} - \frac{d}{dx} \left(4\right)$$

De afgeleide van een constante is $$$0$$$:

$$- {\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + 9 e^{2} = - {\color{red}\left(0\right)} + 9 e^{2}$$

Dus, $$$\frac{d}{dx} \left(9 x e^{2} - 4\right) = 9 e^{2}$$$.

Antwoord

$$$\frac{d}{dx} \left(9 x e^{2} - 4\right) = 9 e^{2}$$$A


Please try a new game Rotatly