Afgeleide van $$$4 \sin{\left(x \right)}$$$
Gerelateerde rekenmachines: Rekenmachine voor logaritmisch differentiëren, Rekenmachine voor impliciete differentiatie met stappen
Uw invoer
Bepaal $$$\frac{d}{dx} \left(4 \sin{\left(x \right)}\right)$$$.
Oplossing
Pas de regel van de constante factor $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ toe met $$$c = 4$$$ en $$$f{\left(x \right)} = \sin{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(4 \sin{\left(x \right)}\right)\right)} = {\color{red}\left(4 \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$De afgeleide van de sinus is $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$$4 {\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} = 4 {\color{red}\left(\cos{\left(x \right)}\right)}$$Dus, $$$\frac{d}{dx} \left(4 \sin{\left(x \right)}\right) = 4 \cos{\left(x \right)}$$$.
Antwoord
$$$\frac{d}{dx} \left(4 \sin{\left(x \right)}\right) = 4 \cos{\left(x \right)}$$$A